1.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
2.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
3.Advancement in the mechanism and influencing factors of retinal displacement after rhegmatogenous retinal detachment surgery
Shengnan LI ; Li WANG ; Xiaojing YI ; Hua WANG ; Hui REN
International Eye Science 2025;25(6):924-927
Retinal displacement refers to the strong fluorescent lines parallel to the retinal vessels that are detected through autofluorescence examination after rhegmatogenous retinal detachment(RRD)surgery. Actually, even if patients with RRD achieve macroscopic structural reattachment after the operation, the visual function of some patients remains suboptimal. This is associated with the incomplete recovery of retinal function, and retinal displacement is one of the critical influencing factors. This paper reviews the related concepts of retinal displacement and systematically summarizes the incidence of retinal displacement after RRD surgery and its impact on function, the possible mechanisms of retinal displacement, and the influence of various factors on the occurrence of retinal displacement reported in the recent 5 a. It is conducive to enabling surgeons to conduct better design and planning for retinal reattachment surgeries, then achieve higher integrity of retinal function recovery, and enable patients to obtain better postoperative visual function.
4.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
5.Spinal curvature abnormalities and related factors among primary and secondary school students in Guangxi in 2023
LUO Yuemei, LI Yan, REN Yiwen, DONG Yonghui, CHEN Li, ZHANG Dengcheng, ZHANG Yi, MA Jun, DONG Yanhui
Chinese Journal of School Health 2025;46(5):712-716
Objective:
To investigate the prevalence and associated factors of spinal curvature abnormalities among primary and secondary school students in the Guangxi Zhuang Autonomous Region, so as to provide a scientific basis for the prevention and control of such abnormalities.
Methods:
From September to November 2023, adopting a stratified cluster random sampling method, spinal curvature screenings and questionnaire surveys were conducted among 168 931 students from grade 4 of primary school to grade 12 of high school in 111 districts and counties across 14 cities in Guangxi. Chi square tests and binary Logistic regression analysis were used to analyze influencing factors of spinal curvature abnormalities.
Results:
In 2023, the detection rate of poor posture among students above grade 4 in Guangxi was 4.24% , and the detection rate of spinal curvature abnormalities was 2.13%. The detection rate was higher among urban students (2.84%) than rural students (1.66%), boarding students (2.61%) than non-boarding students (1.60%), and high school students (3.16%) than junior high (2.45%) and primary school students (1.15%), and the differences were statistically significant ( χ 2=269.85, 221.44, 565.10, P <0.01). A trend of increasing detection rates with higher grade levels was observed ( χ 2 trend =617.63, P <0.01). Binary Logistic regression analysis indicated that students without boarding at school ( OR =0.82, 95% CI =0.75-0.90), engaging in high-intensity physical activity for over 60 min per day ≥5 days per week ( OR =0.90, 95% CI =0.82-0.98), and adequate sleep ( OR =0.87, 95% CI =0.81-0.94) had lower risks of detecting spinal curvature abnormalities ( P <0.05).
Conclusions
The prevalence of spinal curvature abnormalities increases with grade level among primary and secondary school students in Guangxi. Regular moderate-to-vigorous physical activity demonstrates protective effects against spinal abnormalities.
6.Determination method of clopidogrel and its metabolites in rat plasma and its pharmacokinetic study
Huan YI ; Lan MIAO ; Changying REN ; Li LIN ; Mingqian SUN ; Qing PENG ; Ying ZHANG ; Jianxun LIU
China Pharmacy 2025;36(13):1599-1603
OBJECTIVE To establish a method for determining the contents of clopidogrel (CLP), clopidogrel carboxylate (CLP-C), clopidogrel acyl-β-D-glucuronide (CLP-G) and contents of clopidogrel active metabolite (CAM) in rat plasma, and to investigate their in vivo pharmacokinetic characteristics. METHODS The Shisedo CAPCELL ADME column was used with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) in a gradient elution. The flow rate was 0.4 mL/min, and the column temperature was maintained at 20 ℃. The injection volume was 2 μL. The analysis was performed in positive ion mode using electrospray ionization with multiple reaction monitoring. The ion pairs for quantitative analysis were m/z 322.1→211.9 (for CLP), m/z 308.1→197.9 (for CLP-C), m/z 322.1→154.8 (for CLP-G), m/z 504.1→154.9 [for racemic CAM derivative (CAMD)]. Six rats were administered a single intragastric dose of CLP (10 mg/kg). Blood samples were collected before medication and at 0.08, 0.33, 0.66, 1, 2, 4, 6, 10, 23 and 35 hours after medication. The established method was used to detect the serum contents of various components in rats. Pharmacokinetic parameters were then calculated using WinNonlin 6.1 software. RESULTS The linear ranges for CLP, CLP-C and CAMD were 0.08-20.00, 205.00-8 000.00, and 0.04-25.00 ng/mL, respectively (r≥0.990). The relative standard deviations for both intra-day and inter-day precision tests were all less than 15%, and the relative errors for accuracy ranged from -11.68% to 14.40%. The coefficients of variation for the matrix factors were all less than 15%, meeting the requirements for bioanalytical method validation. The results of the pharmacokinetic study revealed that, following a single intagastric administration of CLP in rats, the exposure to the parent CLP in plasma was extremely low. Both the area under the drug concentration-time curve (AUC0-35 h) and the peak concentration of the parent CLP were lower than those of its metabolites. The AUC0-35 h of the active metabolite CAM was approximately 43 times that of CLP, though it had a shorter half-life (2.53 h). The inactive metabolite CLP-C exhibited the highest exposure level, but it reached its peak concentration the latest and was eliminated slowly. The AUC0-35 h of CLP-G was about four times that of CAM, and its half-life was similar to that of CLP-C. CONCLUSIONS This study successfully established an liquid chromatography-tandem mass spectrometry method for the determination of CLP and its three metabolites, and revealed their pharmacokinetic characteristics in rats. Specifically, the parent drug CLP was rapidly eliminated, while the inactive metabolites CLP-C and CLP-G exhibited long half-lives, and active metabolite CAM displayed a transient exposure pattern.
7.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
8.Effect of Stasis-dispelling and Detoxifying Therapy on Clinical Efficacy and JNK Signaling Pathway-related Protein Expression in Endometriosis Patients with Syndrome of Kidney Deficiency and Blood Stasis
Tingting WANG ; Zhaokang QI ; Jinxin REN ; Shuai ZHAO ; Chunxiao WEI ; Yi YU ; Fang LIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):120-129
ObjectiveTo observe the clinical efficacy of the stasis-dispelling and detoxifying therapy in endometriosis (EMs) patients with the syndrome of kidney deficiency and blood stasis and the effects of this therapy on the expression levels of proteins related to the c-Jun N-terminal kinase (JNK) signaling pathway. MethodsA total of 72 patients with EMs due to kidney deficiency and blood stasis who met the criteria at the Integrated Traditional Chinese and Western Medicine Center for Reproduction and Genetics of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine from March 2024 to February 2025 were selected and randomized into a treatment group and a control group, with 36 patients in each group. Another 36 patients undergoing in vitro fertilization-embryo transfer (IVF-ET) due to male factors alone were selected as the blank group. The treatment group took the Zishen Quyu Jiedu formula orally, while the control group and the blank group took placebos. The treatment course encompassed the cycle before ovarian stimulation and the oocyte retrieval cycle. The TCM syndrome score of kidney deficiency and blood stasis, as well as the serum level of cancer antigen 125 (CA125), were evaluated at the time of enrollment (before treatment) and on the trigger day (after treatment). Serum levels of sex hormones were measured on day 2 of the menstrual cycle. On the trigger day, the duration and dosage of gonadotropin (Gn) administration and the serum levels of hormones on the day of human chorionic gonadotropin (HCG) injection were assessed. Embryo outcomes were evaluated 3 days after oocyte retrieval, and clinical pregnancy rates were assessed 28 days after embryo transfer. The baseline data of three groups were observed. The TCM syndrome scores and serum CA125 levels before and after treatment were compared between the treatment and control groups. The baseline endocrine levels, Gn days, Gn dosage, hormone levels on the day of HCG administration, number of oocytes retrieved, number of 2 pronucleus (2PN) fertilizations, number of available embryos, high-quality embryo rate, and clinical pregnancy rate were also assessed in all three groups. Six patients from each group were selected for determination of the protein levels of JNK, c-Jun, and nuclear receptor subfamily 4 group A member 2 (NR4A2) in ovarian granulosa cells (GCs) on the day of oocyte retrieval by Western blot. Results(1) There were no statistically significant differences in the baseline data among three groups, indicating comparability. (2) Compared with the baseline within the same group, the treatment group showed a decrease in the syndrome score of kidney deficiency and blood stasis after treatment. After treatment, serum CA125 levels decreased in both groups (P<0.05), with a more substantial reduction in the treatment group, resulting in a difference between the two groups (P<0.05). (3) There were no significant differences among three groups in terms of baseline serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P), as well as the duration and dosage of Gn administration and the serum levels of LH, E2, and P on the day of HCG administration. (4) For embryo outcomes, the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rates in the treatment group and the blank group were higher than those in the control group (P<0.05), and the treatment group and the blank group had similar 2PN fertilizations. (5) There were differences in clinical pregnancy rate among three groups (P<0.05), and the treatment group had higher pregnancy rate than the control and blank groups. (6) The protein levels of JNK, c-Jun, and NR4A2 in the GCs of the treatment group were lower than those in the control group (P<0.01) and close to those in the blank group (P<0.01). (7) No obvious adverse reactions were observed in any of the subjects during the clinical observation process. ConclusionZishen Quyu Jiedu formula can ameliorate the clinical symptoms of patients with EMs due to kidney deficiency and blood stasis, reduce the serum CA125 level, increase the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rate, and improve pregnancy outcomes. The mechanism may involve downregulating the levels of JNK, c-Jun, and NR4A2 to reduce the apoptosis of ovarian GCs and improve the ovarian function in the patients.
9.Effect of Stasis-dispelling and Detoxifying Therapy on Clinical Efficacy and JNK Signaling Pathway-related Protein Expression in Endometriosis Patients with Syndrome of Kidney Deficiency and Blood Stasis
Tingting WANG ; Zhaokang QI ; Jinxin REN ; Shuai ZHAO ; Chunxiao WEI ; Yi YU ; Fang LIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):120-129
ObjectiveTo observe the clinical efficacy of the stasis-dispelling and detoxifying therapy in endometriosis (EMs) patients with the syndrome of kidney deficiency and blood stasis and the effects of this therapy on the expression levels of proteins related to the c-Jun N-terminal kinase (JNK) signaling pathway. MethodsA total of 72 patients with EMs due to kidney deficiency and blood stasis who met the criteria at the Integrated Traditional Chinese and Western Medicine Center for Reproduction and Genetics of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine from March 2024 to February 2025 were selected and randomized into a treatment group and a control group, with 36 patients in each group. Another 36 patients undergoing in vitro fertilization-embryo transfer (IVF-ET) due to male factors alone were selected as the blank group. The treatment group took the Zishen Quyu Jiedu formula orally, while the control group and the blank group took placebos. The treatment course encompassed the cycle before ovarian stimulation and the oocyte retrieval cycle. The TCM syndrome score of kidney deficiency and blood stasis, as well as the serum level of cancer antigen 125 (CA125), were evaluated at the time of enrollment (before treatment) and on the trigger day (after treatment). Serum levels of sex hormones were measured on day 2 of the menstrual cycle. On the trigger day, the duration and dosage of gonadotropin (Gn) administration and the serum levels of hormones on the day of human chorionic gonadotropin (HCG) injection were assessed. Embryo outcomes were evaluated 3 days after oocyte retrieval, and clinical pregnancy rates were assessed 28 days after embryo transfer. The baseline data of three groups were observed. The TCM syndrome scores and serum CA125 levels before and after treatment were compared between the treatment and control groups. The baseline endocrine levels, Gn days, Gn dosage, hormone levels on the day of HCG administration, number of oocytes retrieved, number of 2 pronucleus (2PN) fertilizations, number of available embryos, high-quality embryo rate, and clinical pregnancy rate were also assessed in all three groups. Six patients from each group were selected for determination of the protein levels of JNK, c-Jun, and nuclear receptor subfamily 4 group A member 2 (NR4A2) in ovarian granulosa cells (GCs) on the day of oocyte retrieval by Western blot. Results(1) There were no statistically significant differences in the baseline data among three groups, indicating comparability. (2) Compared with the baseline within the same group, the treatment group showed a decrease in the syndrome score of kidney deficiency and blood stasis after treatment. After treatment, serum CA125 levels decreased in both groups (P<0.05), with a more substantial reduction in the treatment group, resulting in a difference between the two groups (P<0.05). (3) There were no significant differences among three groups in terms of baseline serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P), as well as the duration and dosage of Gn administration and the serum levels of LH, E2, and P on the day of HCG administration. (4) For embryo outcomes, the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rates in the treatment group and the blank group were higher than those in the control group (P<0.05), and the treatment group and the blank group had similar 2PN fertilizations. (5) There were differences in clinical pregnancy rate among three groups (P<0.05), and the treatment group had higher pregnancy rate than the control and blank groups. (6) The protein levels of JNK, c-Jun, and NR4A2 in the GCs of the treatment group were lower than those in the control group (P<0.01) and close to those in the blank group (P<0.01). (7) No obvious adverse reactions were observed in any of the subjects during the clinical observation process. ConclusionZishen Quyu Jiedu formula can ameliorate the clinical symptoms of patients with EMs due to kidney deficiency and blood stasis, reduce the serum CA125 level, increase the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rate, and improve pregnancy outcomes. The mechanism may involve downregulating the levels of JNK, c-Jun, and NR4A2 to reduce the apoptosis of ovarian GCs and improve the ovarian function in the patients.
10.Development and prospects of predicting drug polymorphs technology
Mei GUO ; Wen-xing DING ; Bo PENG ; Jin-feng LIU ; Yi-fei SU ; Bin ZHU ; Guo-bin REN
Acta Pharmaceutica Sinica 2024;59(1):76-83
Most chemical medicines have polymorphs. The difference of medicine polymorphs in physicochemical properties directly affects the stability, efficacy, and safety of solid medicine products. Polymorphs is incomparably important to pharmaceutical chemistry, manufacturing, and control. Meantime polymorphs is a key factor for the quality of high-end drug and formulations. Polymorph prediction technology can effectively guide screening of trial experiments, and reduce the risk of missing stable crystal form in the traditional experiment. Polymorph prediction technology was firstly based on theoretical calculations such as quantum mechanics and computational chemistry, and then was developed by the key technology of machine learning using the artificial intelligence. Nowadays, the popular trend is to combine the advantages of theoretical calculation and machine learning to jointly predict crystal structure. Recently, predicting medicine polymorphs has still been a challenging problem. It is expected to learn from and integrate existing technologies to predict medicine polymorphs more accurately and efficiently.


Result Analysis
Print
Save
E-mail