1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
2.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
3.Medical student selection interviews: insights into nonverbal observable communications: a cross-sectional study
Pin-Hsiang HUANG ; Kang-Chen FAN ; Alexander WAITS ; Boaz SHULRUF ; Yi-Fang CHUANG
Korean Journal of Medical Education 2025;37(2):153-161
Purpose:
Interviews play a crucial role in the medical school selection process, although little is known about interviewers’ non-verbal observable communications (NoVOC) during the interviews. This study investigates how interviewers perceive NoVOC exhibited by interviewees in two medical schools, one in Taiwan and the other in Australia. The study also explores potential cross-cultural differences in these perceptions.
Methods:
A 26-item questionnaire was developed using a Delphi-like method to identify NoVOC. Interviewers from the University of New South Wales, Australia, and National Yang Ming Chiao Tung University, Taiwan (n=47 and N=78, respectively) rated these NoVOC between 2018 and 2021. Factor analyses identified and validated underlying factors. Measurement invariance across countries and genders was examined.
Results:
A total of 125 interviewers completed the questionnaire, including 78 from Taiwan and 47 from Australia. Using exploratory factor analysis, 14 items yielded reliable three factors “charming,” “disengaged,” and “anxious” (Cronbach’s α=0.853, 0.714, and 0.628, respectively). The measurement invariance analysis indicated that the factor models were invariant across genders but significantly different between the two countries. Further analysis revealed inconsistencies in interpreting the “anxious” factor between Taiwan and Australia.
Conclusion
The three distinct factors revealed in this study provide valuable insights into the NoVOC that interviewers perceive and evaluate during the interview process. The findings highlight the importance of considering non-verbal communication in selecting medical students and emphasize the need for training and awareness among interviewers. Understanding the impact of non-verbal behaviors can improve selection processes to mitigate bias and enhance the fairness and reliability of medical student selection.
4.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
5.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
6.Medical student selection interviews: insights into nonverbal observable communications: a cross-sectional study
Pin-Hsiang HUANG ; Kang-Chen FAN ; Alexander WAITS ; Boaz SHULRUF ; Yi-Fang CHUANG
Korean Journal of Medical Education 2025;37(2):153-161
Purpose:
Interviews play a crucial role in the medical school selection process, although little is known about interviewers’ non-verbal observable communications (NoVOC) during the interviews. This study investigates how interviewers perceive NoVOC exhibited by interviewees in two medical schools, one in Taiwan and the other in Australia. The study also explores potential cross-cultural differences in these perceptions.
Methods:
A 26-item questionnaire was developed using a Delphi-like method to identify NoVOC. Interviewers from the University of New South Wales, Australia, and National Yang Ming Chiao Tung University, Taiwan (n=47 and N=78, respectively) rated these NoVOC between 2018 and 2021. Factor analyses identified and validated underlying factors. Measurement invariance across countries and genders was examined.
Results:
A total of 125 interviewers completed the questionnaire, including 78 from Taiwan and 47 from Australia. Using exploratory factor analysis, 14 items yielded reliable three factors “charming,” “disengaged,” and “anxious” (Cronbach’s α=0.853, 0.714, and 0.628, respectively). The measurement invariance analysis indicated that the factor models were invariant across genders but significantly different between the two countries. Further analysis revealed inconsistencies in interpreting the “anxious” factor between Taiwan and Australia.
Conclusion
The three distinct factors revealed in this study provide valuable insights into the NoVOC that interviewers perceive and evaluate during the interview process. The findings highlight the importance of considering non-verbal communication in selecting medical students and emphasize the need for training and awareness among interviewers. Understanding the impact of non-verbal behaviors can improve selection processes to mitigate bias and enhance the fairness and reliability of medical student selection.
7.Medical student selection interviews: insights into nonverbal observable communications: a cross-sectional study
Pin-Hsiang HUANG ; Kang-Chen FAN ; Alexander WAITS ; Boaz SHULRUF ; Yi-Fang CHUANG
Korean Journal of Medical Education 2025;37(2):153-161
Purpose:
Interviews play a crucial role in the medical school selection process, although little is known about interviewers’ non-verbal observable communications (NoVOC) during the interviews. This study investigates how interviewers perceive NoVOC exhibited by interviewees in two medical schools, one in Taiwan and the other in Australia. The study also explores potential cross-cultural differences in these perceptions.
Methods:
A 26-item questionnaire was developed using a Delphi-like method to identify NoVOC. Interviewers from the University of New South Wales, Australia, and National Yang Ming Chiao Tung University, Taiwan (n=47 and N=78, respectively) rated these NoVOC between 2018 and 2021. Factor analyses identified and validated underlying factors. Measurement invariance across countries and genders was examined.
Results:
A total of 125 interviewers completed the questionnaire, including 78 from Taiwan and 47 from Australia. Using exploratory factor analysis, 14 items yielded reliable three factors “charming,” “disengaged,” and “anxious” (Cronbach’s α=0.853, 0.714, and 0.628, respectively). The measurement invariance analysis indicated that the factor models were invariant across genders but significantly different between the two countries. Further analysis revealed inconsistencies in interpreting the “anxious” factor between Taiwan and Australia.
Conclusion
The three distinct factors revealed in this study provide valuable insights into the NoVOC that interviewers perceive and evaluate during the interview process. The findings highlight the importance of considering non-verbal communication in selecting medical students and emphasize the need for training and awareness among interviewers. Understanding the impact of non-verbal behaviors can improve selection processes to mitigate bias and enhance the fairness and reliability of medical student selection.
8.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
9.Medical student selection interviews: insights into nonverbal observable communications: a cross-sectional study
Pin-Hsiang HUANG ; Kang-Chen FAN ; Alexander WAITS ; Boaz SHULRUF ; Yi-Fang CHUANG
Korean Journal of Medical Education 2025;37(2):153-161
Purpose:
Interviews play a crucial role in the medical school selection process, although little is known about interviewers’ non-verbal observable communications (NoVOC) during the interviews. This study investigates how interviewers perceive NoVOC exhibited by interviewees in two medical schools, one in Taiwan and the other in Australia. The study also explores potential cross-cultural differences in these perceptions.
Methods:
A 26-item questionnaire was developed using a Delphi-like method to identify NoVOC. Interviewers from the University of New South Wales, Australia, and National Yang Ming Chiao Tung University, Taiwan (n=47 and N=78, respectively) rated these NoVOC between 2018 and 2021. Factor analyses identified and validated underlying factors. Measurement invariance across countries and genders was examined.
Results:
A total of 125 interviewers completed the questionnaire, including 78 from Taiwan and 47 from Australia. Using exploratory factor analysis, 14 items yielded reliable three factors “charming,” “disengaged,” and “anxious” (Cronbach’s α=0.853, 0.714, and 0.628, respectively). The measurement invariance analysis indicated that the factor models were invariant across genders but significantly different between the two countries. Further analysis revealed inconsistencies in interpreting the “anxious” factor between Taiwan and Australia.
Conclusion
The three distinct factors revealed in this study provide valuable insights into the NoVOC that interviewers perceive and evaluate during the interview process. The findings highlight the importance of considering non-verbal communication in selecting medical students and emphasize the need for training and awareness among interviewers. Understanding the impact of non-verbal behaviors can improve selection processes to mitigate bias and enhance the fairness and reliability of medical student selection.
10.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.

Result Analysis
Print
Save
E-mail