1.Stage-Based Intervention in Atherosclerosis Using the "Attacking,Supplementing,Dispersing,Dissipating" Method Based on the Accumulation Syndrome Theory
Yujie LUAN ; Chenlu YUAN ; Zizhen CHEN ; Yijun LIU ; Yi WEI ; Yuanhui HU
Journal of Traditional Chinese Medicine 2025;66(7):685-689
Atherosclerosis is a complex pathological condition resulting from lipid deposition, chronic inflammatory responses, and fibrosis, with a prolonged disease course and multifactorial etiology. Based on the traditional Chinese medicine (TCM) theory of accumulation syndrome, atherosclerosis can be classified under this category, with its pathogenesis involving phlegm, blood stasis, deficiency, and accumulation. This paper proposed a stage-based intervention strategy using the four therapeutic principles of "attacking, supplementing, dispersing, dissipating", and divided into six stages based on the pathological progression, including the stage of accumulation before formation, the stage of accumulation already formed, the stage of nucleus accumulation, the stage of nucleus accumulation decay, the stage of nucleus accumulation consolidation, and the stage of severe stenosis of nucleus. At different stages, the intervention focuses on reinforcing healthy qi and consolidating the root, tonifying the kidneys and spleen, dispersing and removing turbidity, removing phlegm stagnation, promoting qi circulation, dispersing accumulations and removing stasis, attacking accumulation and expelling stasis, directing the turbid downward and dispersing accumulation, and treatment would be adjusted based on specific symptoms, which provides a theoretical framework for the prevention and treatment of atherosclerosis with TCM.
2.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
3.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
4.Relationship between GLI1 expression and tumor immune infiltration and clinical prognosis of gastric cancer
Wen-Shuai ZHU ; Jing-Guo SUN ; Yi LU ; Mu-Hua LUAN ; Xiao-Li MA ; Yan-Fei JIA
Chinese Journal of Current Advances in General Surgery 2024;27(1):8-13
Objective:To investigate the correlation between the expression of GLI1 and im-mune invasion and clinical prognosis in gastric cancer.To study the effect of GLI1 expression on drug resistance in gastric cancer.Methods:The expression difference of GLI1 in gastric cancer and normal tissues was analyzed by using TCGA database,and the effect of clinical features and GLI1 gene ex-pression level on prognosis of patients with gastric cancer was analyzed.The correlation between GLI1 gene expression and tumor immune cell infiltration in gastric cancer tissues was analyzed to explore its influence on drug resistance of chemotherapy drugs and targeted drugs.Clinical samples were collect-ed to analyze the difference of GLI1 expression in gastric cancer and paracancer tissues.Results:The expression of GLI1 in gastric cancer tissues was 1.7 times that in normal tissues,and the overall sur-vival and disease-free survival of patients with high expression are shorter than those with low ex-pression(P<0.05).The interstitial score,immune score and abundance of immunoinfiltrating cells were higher in the high expression of GLI1 in gastric cancer tissues.High expression of GLI1 reduces drug sensitivity and is positively correlated with the expression of immune checkpoint markers PDCD1(P<0.05).GLI1 expression was significantly increased in patients with subdifferentiated gastric cancer.Conclusions:GLI1 expression is associated with the prognosis and immune infiltration of patients with gastric cancer,and it may lead to poor prognosis of patients by regulating chemotherapy resis-tance,which may be a potential therapeutic target and molecular marker for gastric cancer.
5.Clinical effects of Bushen Huoxue Ointment Formula on patients with ankylosing spondylitis of Kidney Deficiency and Blood Stasis Pattern
Ye-Ying YANG ; Dong-Yi HE ; Luan XUE ; Ying-Ying YU ; Peng CHENG ; Yu SUN ; Li SU
Chinese Traditional Patent Medicine 2024;46(2):458-465
AIM To explore the clinical effects of Bushen Huoxue Ointment Formula on patients with ankylosing spondylitis of Kidney Deficiency and Blood Stasis Pattern.METHODS One hundred and sixty-seven patients were randomly assigned into control group(55 cases)for 2-year intervention of conventional treatment,exposure group(54 cases)for 2-year intervention of both Bushen Huoxue Decoction and conventional treatment,and high exposure group(58 cases)for 2-year intervention of Bushen Huoxue Ointment Formula,Bushen Huoxue Decoction and conventional treatment.The changes in clinical effects,BASDAI score,ASDAS-CRP,BASFI score,spinal pain score,PGA score,BASMI score,ASQoL score,SPARCC score,Kidney Deficiency and Blood Stasis Pattern score,ESR,CRP,IL-6,TNF-α,IL-17,IL-23,IL-35,NLR,PLR and safety indices were detected.RESULTS The high exposure group demonstrated more ASAS40,ASASAS5/6,BASDAI50 cases than the exposure group and the control group(P<0.05).After the treatment,the high exposure group displayed lower BASDAI score,ASDAS-CRP,BASFI score,spinal pain score,PGA score,BASMI score,SPARCC score,ASQoL score,Kidney Deficiency and Blood Stasis Pattern score,ESR,CRP,IL-6,TNF-α,IL-17,IL-23 than the other two groups(P<0.05),and higher IL-35(P<0.05).After adjusting confounding factors by logistic regression analysis,Bushen Huoxue Decoction and Bushen Huoxue Ointment Formula reduced BASDAI score,ASDAS-CRP(P<0.05),and enhanced clinical effects(P<0.05).No serious adverse reactions were found in the three groups.CONCLUSION For the patients with ankylosing spondylitis of Kidney Deficiency and Blood Stasis Pattern,Bushen Huoxue Ointment Formula can safely and effectively inhibit inflammation,reduce disease activity,alleviate bone marrow edema,improve clinical symptoms,and enhance joint functions and life quality.
6.Projecting the Dynamic Trends of Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome:Modeling the Epidemic in Sichuan Province,China
Li YUAN ; Liu QINXI ; Luan RONGSHENG ; Yang YI ; Wu TAO ; Yang BIHUI
Biomedical and Environmental Sciences 2024;37(9):1003-1014
Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus (HIV) prevalence in Sichuan,the second most heavily affected province in China,and to explore future interventions. Methods The epidemiological,behavioral,and population census data from multiple sources were analyzed to extract inputs for an acquired immunodeficiency syndrome (AIDS) epidemic model (AEM). Baseline curves,derived from historical trends in HIV prevalence,were used,and the AEM was employed to examine future intervention scenarios. Results In 2015,the modeled data suggested an adult HIV prevalence of 0.191% in Sichuan,with an estimated 128,766 people living with HIV/AIDS and 16,983 individuals with newly diagnosed infections. Considering current high-risk behaviors,the model predicts an increase in the adult prevalence to 0.306% by 2025,projecting an estimated 212,168 people living with HIV/AIDS and 16,555 individuals with newly diagnosed infections. Conclusion Heterosexual transmission will likely emerge as the primary mode of AIDS transmission in Sichuan. Furthermore,we anticipate a stabilization in the incidence of AIDS with a concurrent increase in prevalence. Implementing comprehensive intervention measures aimed at high-risk groups could effectively alleviate the spread of AIDS in Sichuan.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Targeting ferroptosis and ferritinophagy:new targets for cardiovascular diseases
LUAN YI ; YANG YANG ; LUAN YING ; LIU HUI ; XING HAN ; PEI JINYAN ; LIU HENGDAO ; QIN BO ; REN KAIDI
Journal of Zhejiang University. Science. B 2024;25(1):1-22
Cardiovascular diseases(CVDs)are a leading factor driving mortality worldwide.Iron,an essential trace mineral,is important in numerous biological processes,and its role in CVDs has raised broad discussion for decades.Iron-mediated cell death,namely ferroptosis,has attracted much attention due to its critical role in cardiomyocyte damage and CVDs.Furthermore,ferritinophagy is the upstream mechanism that induces ferroptosis,and is closely related to CVDs.This review aims to delineate the processes and mechanisms of ferroptosis and ferritinophagy,and the regulatory pathways and molecular targets involved in ferritinophagy,and to determine their roles in CVDs.Furthermore,we discuss the possibility of targeting ferritinophagy-induced ferroptosis modulators for treating CVDs.Collectively,this review offers some new insights into the pathology of CVDs and identifies possible therapeutic targets.
9.Inhibitory effect and molecular mechanism of sinomenine on human hepatocellular carcinoma HepG2 and SK-HEP-1 cells.
Ying-Ying TIAN ; Bei-Bei MA ; Xin-Yue ZHAO ; Chuang LIU ; Yi-Lin LI ; Shang-Yue YU ; Shi-Qiu TIAN ; Hai-Luan PEI ; Ying-Nan LYU ; Ze-Ping ZUO ; Zhi-Bin WANG
China Journal of Chinese Materia Medica 2023;48(17):4702-4710
This study aimed to investigate the effect and molecular mechanism of sinomenine on proliferation, apoptosis, metastasis, and combination with inhibitors in human hepatocellular carcinoma HepG2 cells and SK-HEP-1 cells. The effect of sinomenine on the growth ability of HepG2 and SK-HEP-1 cells were investigated by CCK-8 assay, colony formation assay, and BeyoClick~(TM) EdU-488 staining. The effect of sinomenine on DNA damage was detected by immunofluorescence assay, and the effect of sinomenine on apoptosis of human hepatocellular carcinoma cells was clarified by Hoechst 33258 staining and CellEvent~(TM) Cystein-3/7Green ReadyProbes~(TM) reagent assay. Cell invasion assay and 3D tumor cell spheroid invasion assay were performed to investigate the effect of sinomenine on the invasion ability of human hepatocellular carcinoma cells in vitro. The effect of sinomenine on the regulation of protein expression related to the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription 3(STAT3) signaling pathway in HepG2 and SK-HEP-1 cells was examined by Western blot. Molecular docking was used to evaluate the strength of affinity of sinomenine to the target cysteinyl aspartate specific proteinase-3(caspase-3) and STAT3, and combined with CCK-8 assay to detect the changes in cell viability after combination with STAT3 inhibitor JSI-124 in combination with CCK-8 assay. The results showed that sinomenine could significantly reduce the cell viability of human hepatocellular carcinoma cells in a concentration-and time-dependent manner, significantly inhibit the clonogenic ability of human hepatocellular carcinoma cells, and weaken the invasive ability of human hepatocellular carcinoma cells in vitro. In addition, sinomenine could up-regulate the cleaved level of poly ADP-ribose polymerase(PARP), a marker of apoptosis, and down-regulate the protein levels of p-Akt, p-mTOR, and p-STAT3 in human hepatocellular carcinoma cells. Molecular docking results showed that sinomenine had good affinity with the targets caspase-3 and STAT3, and the sensitivity of sinomenine to hepatocellular carcinoma cells was diminished after STAT3 was inhibited. Therefore, sinomenine can inhibit the proliferation and invasion of human hepatocellular carcinoma cells and induce apoptosis, and the mechanism may be attributed to the activation of caspase-3 signaling and inhibition of the Akt/mTOR/STAT3 pathway. This study can provide a new reference for the in-depth research and clinical application of sinomenine and is of great significance to further promote the scientific development and utilization of sinomenine.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Caspase 3/metabolism*
;
Liver Neoplasms/genetics*
;
Molecular Docking Simulation
;
Sincalide/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Hep G2 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
10.Stapled anoplin peptide combined with photothermal therapy enhances oncolytic immunotherapy of triple-negative breast cancer.
Wei-Dong GAO ; Xiao-Xia LIU ; Ting YANG ; Jia-Yi LIN ; Yu-Xuan SONG ; Sheng-Xin LU ; Xiao-Kun ZHANG ; Ye WU ; Xin LUAN ; Wei-Dong ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4981-4992
This study constructed a nano-drug delivery system, A3@GMH, by co-delivering the stapled anoplin peptide(Ano-3, A3) with the light-harvesting material graphene oxide(GO), and evaluated its oncolytic immunotherapy effect on triple-negative breast cancer(TNBC). A3@GMH was prepared using an emulsion template method and its physicochemical properties were characterized. The in vivo and in vitro photothermal conversion abilities of A3@GMH were investigated using an infrared thermal imager. The oncoly-tic activity of A3@GMH against TNBC 4T1 cells was evaluated through cell counting kit-8(CCK-8), lactate dehydrogenase(LDH) release, live/dead cell staining, and super-resolution microscopy. The targeting properties of A3@GMH on 4T1 cells were assessed using a high-content imaging system and flow cytometry. In vitro and in vivo studies were conducted to investigate the antitumor mechanism of A3@GMH in combination with photothermal therapy(PTT) through inducing immunogenic cell death(ICD) in 4T1 cells. The results showed that the prepared A3@GMH exhibited distinct mesoporous and coated structures with an average particle size of(308.9±7.5) nm and a surface potential of(-6.79±0.58) mV. The encapsulation efficiency and drug loading of A3 were 23.9%±0.6% and 20.5%±0.5%, respectively. A3@GMH demonstrated excellent photothermal conversion ability and biological safety. A3@GMH actively mediated oncolytic features such as 4T1 cell lysis and LDH release, as well as ICD effects, and showed enhanced in vitro antitumor activity when combined with PTT. In vivo, A3@GMH efficiently induced ICD effects with two rounds of PTT, activated the host's antitumor immune response, and effectively suppressed tumor growth in 4T1 tumor-bearing mice, achieving an 88.9% tumor inhibition rate with no apparent toxic side effects. This study suggests that the combination of stapled anoplin peptide and PTT significantly enhances the oncolytic immunotherapy for TNBC and provides a basis for the innovative application of anti-tumor peptides derived from TCM in TNBC treatment.
Humans
;
Animals
;
Mice
;
Photothermal Therapy
;
Triple Negative Breast Neoplasms/pathology*
;
Antimicrobial Cationic Peptides
;
Immunotherapy/methods*
;
Cell Line, Tumor
;
Phototherapy/methods*
;
Nanoparticles/chemistry*

Result Analysis
Print
Save
E-mail