1.Single-cell transcriptome analyses of PBMCs reveal the immunological characteristics of individuals with phlegm-dampness constitution.
Weibo ZHAO ; Liqiang ZHOU ; Yixing WANG ; Ji WANG ; Yi Eve SUN ; Qi WANG
Frontiers of Medicine 2025;19(2):376-385
Ancient traditional Chinese medicine (TCM) doctrine says "The superior doctor prevents illnesses," pointing out preventative medicine as the ultimate goal for medical care. TCM recognizes that genetic predisposition and environmental and lifestyle influences contribute to diseases. It divides people into eight constitutions in addition to one normal/healthy kind. People with one of the eight subhealth constitutions are prone to develop different kinds of corresponding illnesses. The goal for this type of categorization is to help people take preemptive measures to prevent or delay disease onset. As the peripheral immune system through surveying the body, it can capture information from essentially all organs and reflect anomalies occurring in each organ. Thus, the detailed profiling of the peripheral immune-system function can generally reflect a person's overall heath state. In this study, we performed the single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from individuals with Tanshi (phlegm dampness) constitution. They were prone to develop metabolic disorders including diabetes. scRNA-seq revealed greatly reduced mucosal-associated invariable T cell content and heightened TNFα-NFκB, JAK-STAT, and interferon signaling. These findings indicated heightened chronic inflammation, as well as increased hypoxia/apoptosis responses, likely resulting from frequent sleep apnea that Tanshi individuals experienced. Altogether, this pilot study demonstrated effectiveness in using scRNA-seq to reveal molecular-immunological bases for constitution categorization, thereby substantiating that preventative medicine originated from TCM.
Humans
;
Leukocytes, Mononuclear/metabolism*
;
Male
;
Female
;
Gene Expression Profiling
;
Single-Cell Analysis
;
Middle Aged
;
Adult
;
Medicine, Chinese Traditional
;
Transcriptome
;
Single-Cell Gene Expression Analysis
2.Correction to: Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity.
Bo JING ; Chunxue ZHANG ; Xianjun LIU ; Liqiang ZHOU ; Jiping LIU ; Yinan YAO ; Juehua YU ; Yuteng WENG ; Min PAN ; Jie LIU ; Zuolin WANG ; Yao SUN ; Yi Eve SUN
Protein & Cell 2019;10(8):620-621
In the original publication, the label of Fig. 2C should be read as "GFAP/lectin/DAPI" not "DMP1/GFAP/lectin/DAPI".
3.Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity.
Bo JING ; Chunxue ZHANG ; Xianjun LIU ; Liqiang ZHOU ; Jiping LIU ; Yinan YAO ; Juehua YU ; Yuteng WENG ; Min PAN ; Jie LIU ; Zuolin WANG ; Yao SUN ; Yi Eve SUN
Protein & Cell 2018;9(3):298-309
The blood-brain barrier (BBB) is a tight boundary formed between endothelial cells and astrocytes, which separates and protects brain from most pathogens as well as neural toxins in circulation. However, detailed molecular players involved in formation of BBB are not completely known. Dentin matrix protein 1 (DMP1)-proteoglycan (PG), which is known to be involved in mineralization of bones and dentin, is also expressed in soft tissues including brain with unknown functions. In the present study, we reported that DMP1-PG was expressed in brain astrocytes and enriched in BBB units. The only glycosylation site of DMP1 is serine89 (S89) in the N-terminal domain of the protein in mouse. Mutant mice with DMP1 point mutations changing S89 to glycine (S89G), which completely eradicated glycosylation of the protein, demonstrated severe BBB disruption. Another breed of DMP1 mutant mice, which lacked the C-terminal domain of DMP1, manifested normal BBB function. The polarity of S89G-DMP1 astrocytes was disrupted and cell-cell adhesion was loosened. Through a battery of analyses, we found that DMP1 glycosylation was critically required for astrocyte maturation both in vitro and in vivo. S89G-DMP1 mutant astrocytes failed to express aquaporin 4 and had reduced laminin and ZO1 expression, which resulted in disruption of BBB. Interestingly, overexpression of wild-type DMP1-PG in mouse brain driven by the nestin promoter elevated laminin and ZO1 expression beyond wild type levels and could effectively resisted intravenous mannitol-induced BBB reversible opening. Taken together, our study not only revealed a novel element, i.e., DMP1-PG, that regulated BBB formation, but also assigned a new function to DMP1-PG.
Animals
;
Astrocytes
;
cytology
;
metabolism
;
Blood-Brain Barrier
;
cytology
;
metabolism
;
Cells, Cultured
;
Extracellular Matrix Proteins
;
genetics
;
metabolism
;
Female
;
Glycosylation
;
Male
;
Mice
;
Proteoglycans
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail