1.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
2.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
3.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
4.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
5.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
6.The Korean Academy of Asthma Allergy and Clinical Immunology guidelines for sublingual immunotherapy
Gwanghui RYU ; Hye Mi JEE ; Hwa Young LEE ; Sung-Yoon KANG ; Kyunghoon KIM ; Ju Hee KIM ; Kyung Hee PARK ; So-Young PARK ; Myong Soon SUNG ; Youngsoo LEE ; Eun-Ae YANG ; Jin-Young MIN ; Eun Kyo HA ; Sang Min LEE ; Yong Won LEE ; Eun Hee CHUNG ; Sun Hee CHOI ; Young-Il KOH ; Seon Tae KIM ; Dong-Ho NAHM ; Jung Won PARK ; Jung Yeon SHIM ; Young Min AN ; Man Yong HAN ; Jeong-Hee CHOI ; Yoo Seob SHIN ; Doo Hee HAN ;
Allergy, Asthma & Respiratory Disease 2024;12(3):125-133
Allergen immunotherapy (AIT) has been used for over a century and has been demonstrated to be effective in treating patients with various allergic diseases. AIT allergens can be administered through various routes, including subcutaneous, sublingual, intralymphatic, oral, or epicutaneous routes. Sublingual immunotherapy (SLIT) has recently gained clinical interest, and it is considered an alternative treatment for allergic rhinitis (AR) and asthma. This review provides an overview of the current evidence-based studies that address the use of SLIT for treating AR, including (1) mechanisms of action, (2) appropriate patient selection for SLIT, (3) the current available SLIT products in Korea, and (4) updated information on its efficacy and safety. Finally, this guideline aims to provide the clinician with practical considerations for SLIT.
7.The Korean Academy of Asthma Allergy and Clinical Immunology guidelines for allergen immunotherapy
Hwa Young LEE ; Sung-Yoon KANG ; Kyunghoon KIM ; Ju Hee KIM ; Gwanghui RYU ; Jin-Young MIN ; Kyung Hee PARK ; So-Young PARK ; Myongsoon SUNG ; Youngsoo LEE ; Eun-Ae YANG ; Hye Mi JEE ; Eun Kyo HA ; Yoo Seob SHIN ; Sang Min LEE ; Eun Hee CHUNG ; Sun Hee CHOI ; Young-Il KOH ; Seon Tae KIM ; Dong-Ho NAHM ; Jung Won PARK ; Jung Yeon SHIM ; Young Min AN ; Doo Hee HAN ; Man Yong HAN ; Yong Won LEE ; Jeong-Hee CHOI ;
Allergy, Asthma & Respiratory Disease 2024;12(3):102-124
Allergen immunotherapy (AIT) is a causative treatment of allergic diseases in which allergen extracts are regularly administered in a gradually escalated doses, leading to immune tolerance and consequent alleviation of allergic diseases. The need for uniform practice guidelines in AIT is continuously growing as the number of potential candidates for AIT increases and new therapeutic approaches are tried. This updated version of the Korean Academy of Asthma Allergy and Clinical Immunology recommendations for AIT, published in 2010, proposes an expert opinion by specialists in allergy, pediatrics, and otorhinolaryngology. This guideline deals with the basic knowledge of AIT, including mechanisms, clinical efficacy, allergen standardization, important allergens in Korea, and special consideration in pediatrics. The article also covers the methodological aspects of AIT, including patient selection, allergen selection, schedule and doses, follow-up care, efficacy measurements, and management of adverse reactions. Although this guideline suggests the optimal dosing schedule, an individualized approach and modifications are recommended considering the situation for each patient and clinic.
8.Clinical Outcomes of Small Cell Carcinoma of the Genitourinary Tract and the Prognostic Significance of the Tumor Immune Microenvironment
Jaewon HYUNG ; Hyung-Don KIM ; Gi Hwan KIM ; Yong Mee CHO ; Yeon-Mi RYU ; Sang-Yeob KIM ; Inkeun PARK ; Shinkyo YOON ; Jae Lyun LEE
Cancer Research and Treatment 2024;56(2):624-633
Purpose:
Small cell carcinoma of the genitourinary tract (GU SCC) is a rare disease with a poor prognosis. There are only limited treatment options due to insufficient understanding of the disease. In this study, we analyzed the clinical outcomes of patients with GU SCC and their association with the tumor immune phenotype.
Materials and Methods:
Patients diagnosed with GU SCC were included. Survival outcomes according to the primary location (prostate and non-prostate) and stages (limited disease [LD] and extensive disease [ED]) were analyzed. We performed multiplex immunohistochemistry (IHC) in non-prostate SCC patients and analyzed the immune cell population.
Results:
A total of 77 patients were included in this study. Their median age was 71 years, 67 patients (87.0%) were male, and 48 patients (62.3%) had non-prostate SCC. All patients with ED (n=31, 40.3%) received etoposide plus platinum (EP) as initial treatment and median overall survival (OS) was 9.7 months (95% confidence interval [CI], 7.1 to 18.6). Patients with LD (n=46, 59.7%) received EP followed by radiotherapy or surgery, and 24-months OS rate was 63.6% (95% CI, 49.9 to 81.0). The multiplex IHC analysis of 21 patients with non-prostate SCC showed that patients with a higher density of programmed death-ligand 1–expressing CD68+CD206+ M2-like macrophages had significantly worse OS outcomes with an adjusted hazards ratio of 4.17 (95% CI, 1.25 to 14.29; adjusted p=0.02).
Conclusion
Patients with GU SCC had a poor prognosis, even those with localized disease. The tumor immune phenotypes were significantly associated with survival. This finding provides new insights for treating GU SCC.
9.Artificial intelligence algorithm for neoplastic cell percentage estimation and its application to copy number variation in urinary tract cancer
Jinahn JEONG ; Deokhoon KIM ; Yeon-Mi RYU ; Ja-Min PARK ; Sun Young YOON ; Bokyung AHN ; Gi Hwan KIM ; Se Un JEONG ; Hyun-Jung SUNG ; Yong Il LEE ; Sang-Yeob KIM ; Yong Mee CHO
Journal of Pathology and Translational Medicine 2024;58(5):229-240
Background:
Bladder cancer is characterized by frequent mutations, which provide potential therapeutic targets for most patients. The effectiveness of emerging personalized therapies depends on an accurate molecular diagnosis, for which the accurate estimation of the neoplastic cell percentage (NCP) is a crucial initial step. However, the established method for determining the NCP, manual counting by a pathologist, is time-consuming and not easily executable.
Methods:
To address this, artificial intelligence (AI) models were developed to estimate the NCP using nine convolutional neural networks and the scanned images of 39 cases of urinary tract cancer. The performance of the AI models was compared to that of six pathologists for 119 cases in the validation cohort. The ground truth value was obtained through multiplexed immunofluorescence. The AI model was then applied to 41 cases in the application cohort that underwent next-generation sequencing testing, and its impact on the copy number variation (CNV) was analyzed.
Results:
Each AI model demonstrated high reliability, with intraclass correlation coefficients (ICCs) ranging from 0.82 to 0.88. These values were comparable or better to those of pathologists, whose ICCs ranged from 0.78 to 0.91 in urothelial carcinoma cases, both with and without divergent differentiation/ subtypes. After applying AI-driven NCP, 190 CNV (24.2%) were reclassified with 66 (8.4%) and 78 (9.9%) moved to amplification and loss, respectively, from neutral/minor CNV. The neutral/minor CNV proportion decreased by 6%.
Conclusions
These results suggest that AI models could assist human pathologists in repetitive and cumbersome NCP calculations.
10.Argutinic acid, A New Triterpenoid from the Fruits of Actinidia arguta
Se Hwan RYU ; Jong Hoon AHN ; Ayman TURK ; Seon Beom KIM ; Bang Yeon HWANG ; Mi Kyeong LEE
Natural Product Sciences 2024;30(3):208-211
Actinidia arguta, also called as kiwiberry or hardy kiwifruit, is one of the major varieties of kiwi plants. It is small in size and has no hairs on the surface, which making it easy to be consumed. In addition, it can be cultivated in Asia, due to its cold resistance. We have been interested in the beneficial effects of the fruits of A. arguta and investigated the constituents and biological activities. A new triterpenoid, argutinic acid, along with three triterpenoids and three megastigmines were isolated from the fruits of A. arguta. The structures were determined by spectroscopic analysis including NMR, MS, UV and IR. Among the isolated compounds, two triterpenes, argutinic acid (1) and usrolic acid (4) showed α-glucosidase inhibitory activities.

Result Analysis
Print
Save
E-mail