1.Implant–supported fixed prosthesis for orthognathic surgery in ectodermal dysplasia: a case report
Yeon-Ah SHIN ; Ji-Eun MOON ; Se-Ha KANG ; Chan-Ik PARK ; Yoon-Joo BAE ; Min-Seok OH ; Woo-Jin JEON ; Na-Ra KANG ; Min-Jung BAEK
The Journal of Korean Academy of Prosthodontics 2025;63(1):20-30
Patients with ectodermal dysplasia often have atrophied alveolar bone and an inadequate maxillomandibular relationship owing to congenital edentulism.Accurate implant placement that can overcomes anatomical limitations and orthognathic surgery to improve the maxillomandibular relationship is necessary for creating implant-supported prosthesis for these patients. Implant placement and provisional prosthesis fabrication before orthognathic surgery can provide critical fixed reference points and ensure accuracy during orthognathic surgery.In our patient, a digital system was used to design a surgical guide that considered the predictable position of the definitive prosthesis, allowing the placement of implants to overcome anatomical limitations and the creation of fixed reference points via the delivery of a provisional prosthesis for effective orthognathic surgery. The lack of compensation during orthognathic surgery was considered in the definitive prosthesis. As a result, a prosthesis with a minimal anterior cantilever was fabricated. This study aimed to determine the appropriate sequence of multidisciplinary collaborations that would, result in the best functional and aesthetic outcomes.
2.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
3.Application of Machine Learning Algorithms for Risk Stratification and Efficacy Evaluation in Cervical Cancer Screening among the ASCUS/LSIL Population: Evidence from the Korean HPV Cohort Study
Heekyoung SONG ; Hong Yeon LEE ; Shin Ah OH ; Jaehyun SEONG ; Soo Young HUR ; Youn Jin CHOI
Cancer Research and Treatment 2025;57(2):547-557
Purpose:
We assessed human papillomavirus (HPV) genotype-based risk stratification and the efficacy of cytology testing for cervical cancer screening in patients with atypical squamous cells of undetermined significance (ASCUS)/low-grade squamous intraepithelial lesion (LSIL).
Materials and Methods:
Between 2010 and 2021, we monitored 1,273 HPV-positive women with ASCUS/LSIL every 6 months for up to 60 months. HPV infections were categorized as persistent (HPV positivity consistently observed post-enrollment), negative (HPV negativity consistently observed post-enrollment), or non-persistent (neither consistently positive nor negative). HPV genotypes were grouped into high-risk (Hr) groups 1 (types 16, 18, 31, 33, 45, 52, and 58) and 2 (types 35, 39, 51, 56, 59, 66, and 68) and a low-risk group. Hr1 was subdivided into types (a) 16 and 18; (b) 31, 33, and 45; and (c) 52 and 58. Cox regression and machine learning (ML) algorithms were used to analyze progression rates.
Results:
Among 1,273 participants, 17.6% with persistent HPV infections experienced disease progression versus no progression in the HPV-negative group (p < 0.001). Cox analysis revealed the highest hazard ratios (HRs) for Hr1-a (11.6, p < 0.001), followed by Hr1-b (9.26, p < 0.001) and Hr1-c (7.21, p < 0.001). HRs peaked at 12-24 months, with Hr1-a maintaining significance at 24-36 months (10.7, p=0.034). ML analysis identified the final cytology change pattern as the most significant factor, with 14-15 months the optimal time for detecting progression from the first examination.
Conclusion
In ASCUS/LSIL cases, follow-up strategies should be based on HPV risk types. Annual follow-up was the most effective monitoring for detecting progression/regression.
4.Implant–supported fixed prosthesis for orthognathic surgery in ectodermal dysplasia: a case report
Yeon-Ah SHIN ; Ji-Eun MOON ; Se-Ha KANG ; Chan-Ik PARK ; Yoon-Joo BAE ; Min-Seok OH ; Woo-Jin JEON ; Na-Ra KANG ; Min-Jung BAEK
The Journal of Korean Academy of Prosthodontics 2025;63(1):20-30
Patients with ectodermal dysplasia often have atrophied alveolar bone and an inadequate maxillomandibular relationship owing to congenital edentulism.Accurate implant placement that can overcomes anatomical limitations and orthognathic surgery to improve the maxillomandibular relationship is necessary for creating implant-supported prosthesis for these patients. Implant placement and provisional prosthesis fabrication before orthognathic surgery can provide critical fixed reference points and ensure accuracy during orthognathic surgery.In our patient, a digital system was used to design a surgical guide that considered the predictable position of the definitive prosthesis, allowing the placement of implants to overcome anatomical limitations and the creation of fixed reference points via the delivery of a provisional prosthesis for effective orthognathic surgery. The lack of compensation during orthognathic surgery was considered in the definitive prosthesis. As a result, a prosthesis with a minimal anterior cantilever was fabricated. This study aimed to determine the appropriate sequence of multidisciplinary collaborations that would, result in the best functional and aesthetic outcomes.
5.Implant–supported fixed prosthesis for orthognathic surgery in ectodermal dysplasia: a case report
Yeon-Ah SHIN ; Ji-Eun MOON ; Se-Ha KANG ; Chan-Ik PARK ; Yoon-Joo BAE ; Min-Seok OH ; Woo-Jin JEON ; Na-Ra KANG ; Min-Jung BAEK
The Journal of Korean Academy of Prosthodontics 2025;63(1):20-30
Patients with ectodermal dysplasia often have atrophied alveolar bone and an inadequate maxillomandibular relationship owing to congenital edentulism.Accurate implant placement that can overcomes anatomical limitations and orthognathic surgery to improve the maxillomandibular relationship is necessary for creating implant-supported prosthesis for these patients. Implant placement and provisional prosthesis fabrication before orthognathic surgery can provide critical fixed reference points and ensure accuracy during orthognathic surgery.In our patient, a digital system was used to design a surgical guide that considered the predictable position of the definitive prosthesis, allowing the placement of implants to overcome anatomical limitations and the creation of fixed reference points via the delivery of a provisional prosthesis for effective orthognathic surgery. The lack of compensation during orthognathic surgery was considered in the definitive prosthesis. As a result, a prosthesis with a minimal anterior cantilever was fabricated. This study aimed to determine the appropriate sequence of multidisciplinary collaborations that would, result in the best functional and aesthetic outcomes.
6.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
7.Application of Machine Learning Algorithms for Risk Stratification and Efficacy Evaluation in Cervical Cancer Screening among the ASCUS/LSIL Population: Evidence from the Korean HPV Cohort Study
Heekyoung SONG ; Hong Yeon LEE ; Shin Ah OH ; Jaehyun SEONG ; Soo Young HUR ; Youn Jin CHOI
Cancer Research and Treatment 2025;57(2):547-557
Purpose:
We assessed human papillomavirus (HPV) genotype-based risk stratification and the efficacy of cytology testing for cervical cancer screening in patients with atypical squamous cells of undetermined significance (ASCUS)/low-grade squamous intraepithelial lesion (LSIL).
Materials and Methods:
Between 2010 and 2021, we monitored 1,273 HPV-positive women with ASCUS/LSIL every 6 months for up to 60 months. HPV infections were categorized as persistent (HPV positivity consistently observed post-enrollment), negative (HPV negativity consistently observed post-enrollment), or non-persistent (neither consistently positive nor negative). HPV genotypes were grouped into high-risk (Hr) groups 1 (types 16, 18, 31, 33, 45, 52, and 58) and 2 (types 35, 39, 51, 56, 59, 66, and 68) and a low-risk group. Hr1 was subdivided into types (a) 16 and 18; (b) 31, 33, and 45; and (c) 52 and 58. Cox regression and machine learning (ML) algorithms were used to analyze progression rates.
Results:
Among 1,273 participants, 17.6% with persistent HPV infections experienced disease progression versus no progression in the HPV-negative group (p < 0.001). Cox analysis revealed the highest hazard ratios (HRs) for Hr1-a (11.6, p < 0.001), followed by Hr1-b (9.26, p < 0.001) and Hr1-c (7.21, p < 0.001). HRs peaked at 12-24 months, with Hr1-a maintaining significance at 24-36 months (10.7, p=0.034). ML analysis identified the final cytology change pattern as the most significant factor, with 14-15 months the optimal time for detecting progression from the first examination.
Conclusion
In ASCUS/LSIL cases, follow-up strategies should be based on HPV risk types. Annual follow-up was the most effective monitoring for detecting progression/regression.
8.Implant–supported fixed prosthesis for orthognathic surgery in ectodermal dysplasia: a case report
Yeon-Ah SHIN ; Ji-Eun MOON ; Se-Ha KANG ; Chan-Ik PARK ; Yoon-Joo BAE ; Min-Seok OH ; Woo-Jin JEON ; Na-Ra KANG ; Min-Jung BAEK
The Journal of Korean Academy of Prosthodontics 2025;63(1):20-30
Patients with ectodermal dysplasia often have atrophied alveolar bone and an inadequate maxillomandibular relationship owing to congenital edentulism.Accurate implant placement that can overcomes anatomical limitations and orthognathic surgery to improve the maxillomandibular relationship is necessary for creating implant-supported prosthesis for these patients. Implant placement and provisional prosthesis fabrication before orthognathic surgery can provide critical fixed reference points and ensure accuracy during orthognathic surgery.In our patient, a digital system was used to design a surgical guide that considered the predictable position of the definitive prosthesis, allowing the placement of implants to overcome anatomical limitations and the creation of fixed reference points via the delivery of a provisional prosthesis for effective orthognathic surgery. The lack of compensation during orthognathic surgery was considered in the definitive prosthesis. As a result, a prosthesis with a minimal anterior cantilever was fabricated. This study aimed to determine the appropriate sequence of multidisciplinary collaborations that would, result in the best functional and aesthetic outcomes.
9.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
10.Application of Machine Learning Algorithms for Risk Stratification and Efficacy Evaluation in Cervical Cancer Screening among the ASCUS/LSIL Population: Evidence from the Korean HPV Cohort Study
Heekyoung SONG ; Hong Yeon LEE ; Shin Ah OH ; Jaehyun SEONG ; Soo Young HUR ; Youn Jin CHOI
Cancer Research and Treatment 2025;57(2):547-557
Purpose:
We assessed human papillomavirus (HPV) genotype-based risk stratification and the efficacy of cytology testing for cervical cancer screening in patients with atypical squamous cells of undetermined significance (ASCUS)/low-grade squamous intraepithelial lesion (LSIL).
Materials and Methods:
Between 2010 and 2021, we monitored 1,273 HPV-positive women with ASCUS/LSIL every 6 months for up to 60 months. HPV infections were categorized as persistent (HPV positivity consistently observed post-enrollment), negative (HPV negativity consistently observed post-enrollment), or non-persistent (neither consistently positive nor negative). HPV genotypes were grouped into high-risk (Hr) groups 1 (types 16, 18, 31, 33, 45, 52, and 58) and 2 (types 35, 39, 51, 56, 59, 66, and 68) and a low-risk group. Hr1 was subdivided into types (a) 16 and 18; (b) 31, 33, and 45; and (c) 52 and 58. Cox regression and machine learning (ML) algorithms were used to analyze progression rates.
Results:
Among 1,273 participants, 17.6% with persistent HPV infections experienced disease progression versus no progression in the HPV-negative group (p < 0.001). Cox analysis revealed the highest hazard ratios (HRs) for Hr1-a (11.6, p < 0.001), followed by Hr1-b (9.26, p < 0.001) and Hr1-c (7.21, p < 0.001). HRs peaked at 12-24 months, with Hr1-a maintaining significance at 24-36 months (10.7, p=0.034). ML analysis identified the final cytology change pattern as the most significant factor, with 14-15 months the optimal time for detecting progression from the first examination.
Conclusion
In ASCUS/LSIL cases, follow-up strategies should be based on HPV risk types. Annual follow-up was the most effective monitoring for detecting progression/regression.

Result Analysis
Print
Save
E-mail