1.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
2.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
3.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
4.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
5.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
6.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
7.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
8.Exploring the Expression and Function of T Cell Surface Markers Identified through Cellular Indexing of Transcriptomes and Epitopes by Sequencing
Joon Yeon HWANG ; Youngtaek KIM ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(9):544-555
Purpose:
By utilizing both protein and mRNA expression patterns, we can identify more detailed and diverse immune cells, providing insights into understanding the complex immune landscape in cancer ecosystems.
Materials and Methods:
This study was performed by obtaining publicly available Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data of peripheral blood mononuclear cells (PBMCs) from the Gene Expression Omnibus database. A total of 94674 total cells were analyzed, of which 32412 were T cells. There were 228 protein features and 16262 mRNA features in the data.The Seurat package was used for quality control and preprocessing, principal component analysis was performed, and Uniform Manifold Approximation and Projection was used to visualize the clusters. Protein and mRNA levels in the CITE-seq were analyzed.
Results:
We observed that a subset of T cells in the clusters generated at the protein level divided better. By identifying mRNA markers that were highly correlated with the CD4 and CD8 proteins and cross-validating CD26 and CD99 markers using flow cytometry, we found that CD4 + and CD8+ T cells were better discriminated in PBMCs. Weighted Nearest Neighbor clustering results identified a previously unobserved T cell subset.
Conclusion
In this study, we used CITE-seq data to confirm that protein expression patterns could be used to identify cells more precisely. These findings will improve our understanding of the heterogeneity of immune cells in the future and provide valuable insights into the complexity of the immune response in health and disease.
9.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
10.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.

Result Analysis
Print
Save
E-mail