1.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
		                        		
		                        			 Objective:
		                        			This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines. 
		                        		
		                        			Methods:
		                        			Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud. 
		                        		
		                        			Results:
		                        			In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model. 
		                        		
		                        			Conclusion
		                        			In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines. 
		                        		
		                        		
		                        		
		                        	
2.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
		                        		
		                        			 Objective:
		                        			This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines. 
		                        		
		                        			Methods:
		                        			Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud. 
		                        		
		                        			Results:
		                        			In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model. 
		                        		
		                        			Conclusion
		                        			In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines. 
		                        		
		                        		
		                        		
		                        	
3.Reversal Effect of Arctigenin on the Drug Resistance in Leukemia K562/A02 Cells and Its Mechanism
Journal of Experimental Hematology 2024;32(2):409-415
		                        		
		                        			
		                        			Objective:To study the effect of arctigenin(ARG)on adriamycin(ADM)resistance of leukemia cell line K562/A02 and the underlying mechanism.Methods:Human leukemia cell line K562 and ADM-resistant cell line K562/A02 were cultured and treated with 2.5-50 μmol/L ADM.Cell proliferation was measured using CCK-8 method,and half maximal inhibitory concentration(IC50)was calculated.K562/A02 cells were treated with different concentrations of ARG(1,2,4,8,16 mmol/L)to detect the effect of ARG on K562/A02 cells,and a suitable concentration(2 mmol/L)was selected for subsequent experiments.K562/A02 cells were treated with 2 mmol/L ARG and 5 μmol/L ADM,and cell apoptosis was detected by flow cytometry,the expression of P-gp,MRP,cleaved caspase-3,Bax,Bcl-2 proteins and the TLR4/NF-κB signaling pathway-related proteins were measured by Western blot.TLR4 overexpression plasmid was transfected into K562/A02 cells which were co-treated with ARG and ADM.then drug sensitivity and cell apoptosis were measured.Results:The IC50 value of ADM on K562/A02 cells was 36.57 μmol/L,which was significantly higher than that on K562 cells(1.30 μmol/L).ARG with a concentration of≤2 mmol/L did not have a significant effect on K562/A02 cells.2 mmol/L ARG significantly reduced the IC50 of ADM on K562/A02 cells.In 5 μmol/L ADM-treated K562/A02 cells,compared with the control group,the apoptosis rate of K562/A02 cells in the ARG group was significantly increased,the expressions of cleaved caspase-3,Bax proteins were significantly upregulated,the expressions of P-gp,MRP,Bcl-2,TLR4.MyD88,and p-NF-k B proteins were significantly downregulated,and the differences were statistically significant(P<0.05).After transfection with TLR4 overexpression plasmid,the sensitivity of ARG-treated K562/A02 cells to ADM was reduced(P<0.05),the cell apoptosis was decreased,and the expressions of P-gp,MRP,Bcl-2 and TLR4/NF-κB signaling pathway-related proteins were significantly elevated,while the expressions of cleaved caspase-3 and Bax proteins were significantly decreased(all P<0.05).Conclusion:ARG may reverse the resistance of human leukemia cell line K562/A02 to ADM by inhibiting TLR4/NF-κB signaling pathway.
		                        		
		                        		
		                        		
		                        	
4.Expert consensus on pediatric orthodontic therapies of malocclusions in children
Zhou CHENCHEN ; Duan PEIPEI ; He HONG ; Song JINLIN ; Hu MIN ; Liu YUEHUA ; Liu YAN ; Guo JIE ; Jin FANG ; Cao YANG ; Jiang LINGYONG ; Ye QINGSONG ; Zhu MIN ; Jiang BEIZHAN ; Ruan WENHUA ; Yuan XIAO ; Li HUANG ; Zou RUI ; Tian YULOU ; Gao LI ; Shu RUI ; Chen JIANWEI ; Liu RENKAI ; Zou SHUJUAN ; Li XIAOBING
International Journal of Oral Science 2024;16(2):186-196
		                        		
		                        			
		                        			Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment.
		                        		
		                        		
		                        		
		                        	
5.Advancing cell-based therapy in sepsis: An anesthesia outlook
Hui YE ; Xiaoyu ZOU ; Xiangming FANG
Chinese Medical Journal 2024;137(13):1522-1534
		                        		
		                        			
		                        			Sepsis poses a health challenge globally owing to markedly high rates of morbidity and mortality. Despite employing bundle therapy over two decades, approaches including transient organ supportive therapy and clinical trials focusing on signaling pathways have failed in effectively reversing multiple organ failure in patients with sepsis. Prompt and appropriate perioperative management for surgical patients with concurrent sepsis is urgent. Consequently, innovative therapies focusing on remedying organ injuries are necessitated. Cell therapy has emerged as a promising therapeutic avenue for repairing local damage to vital organs and restoring homeostasis during perioperative treatment for sepsis. Given the pivotal role of immune cell responses in the pathogenesis of sepsis, stem cell-based interventions that primarily modulate immune responses by interacting with multiple immune cells have progressed into clinical trials. The strides made in single-cell sequencing and gene-editing technologies have advanced the understanding of disease-specific immune responses in sepsis. Chimeric antigen receptor (CAR)-immune cell therapy offers an intriguing option for the treatment of sepsis. This review provides a concise overview of immune cell therapy, its current status, and the strides made in the context of sepsis research, discussing potential strategies for the management of patients with sepsis during perioperative stages.
		                        		
		                        		
		                        		
		                        	
6.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
		                        		
		                        			 Objective:
		                        			This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines. 
		                        		
		                        			Methods:
		                        			Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud. 
		                        		
		                        			Results:
		                        			In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model. 
		                        		
		                        			Conclusion
		                        			In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines. 
		                        		
		                        		
		                        		
		                        	
7.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
		                        		
		                        			 Objective:
		                        			This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines. 
		                        		
		                        			Methods:
		                        			Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud. 
		                        		
		                        			Results:
		                        			In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model. 
		                        		
		                        			Conclusion
		                        			In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines. 
		                        		
		                        		
		                        		
		                        	
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
		                        		
		                        			 Objective:
		                        			This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines. 
		                        		
		                        			Methods:
		                        			Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud. 
		                        		
		                        			Results:
		                        			In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model. 
		                        		
		                        			Conclusion
		                        			In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines. 
		                        		
		                        		
		                        		
		                        	
9.Antidepressant-like active ingredients and their related mechanisms of functional foods or medicine and food homologous products
YE Tian ; XU Mengtao ; FANG Jingpeng ; WU Qinxuan ; ZOU Xiaoyan ; YAN Fangqin ; QING Zhixing
Digital Chinese Medicine 2023;6(1):9-27
		                        		
		                        			
		                        			【Objective】   To provide a new idea for the treatment of depression by summarizing the antidepressant effect and mechanism of active ingredients in functional food, and medicine and food homologous products.  【Methods】   The literature related to the antidepressant of functional food or medicine and food homologous products from September 25, 1996 to September 5, 2022 was collected through PubMed, Google Academic, Web of Science, and China National Knowledge Infrastructure (CNKI) databases. After that, their antidepressant active ingredients and mechanism of action were systematically summarized and analyzed.  【Results】   A total of 146 pieces of literature were involved in the study, including 67 plant-derived functional foods or medicine and food homologous products, 32 antidepressant extracts (including 8 flavonoid extracts), and 87 antidepressant active ingredients. The 87 antidepressant active ingredients include 7 terpenes, 22 saponins, 15 flavonoids, 11 phenylpropanoids, 7 phenols, 6 sugars, 8 alkaloids, and 11 others.  【Conclusion】   The study summarized and analyzed the active ingredients and mechanisms of antidepressants in functional foods and medicine and food homologous products, which provides a new vision for the development of new antidepressants and a potential alternative treatment for patients with depression.
		                        		
		                        		
		                        		
		                        	
10.Clinical features and prognosis of juvenile myelomonocytic leukemia: an analysis of 63 cases.
Wen-Yu YANG ; Li-Peng LIU ; Fang LIU ; Ben-Quan QI ; Li-Xian CHANG ; Li ZHANG ; Xiao-Juan CHEN ; Yao ZOU ; Yu-Mei CHEN ; Ye GUO ; Xiao-Fan ZHU
Chinese Journal of Contemporary Pediatrics 2023;25(3):265-271
		                        		
		                        			OBJECTIVES:
		                        			To investigate the clinical features of juvenile myelomonocytic leukemia (JMML) and their association with prognosis.
		                        		
		                        			METHODS:
		                        			Clinical and prognosis data were collected from the children with JMML who were admitted from January 2008 to December 2016, and the influencing factors for prognosis were analyzed.
		                        		
		                        			RESULTS:
		                        			A total of 63 children with JMML were included, with a median age of onset of 25 months and a male/female ratio of 3.2∶1. JMML genetic testing was performed for 54 children, and PTPN11 mutation was the most common mutation and was observed in 23 children (43%), among whom 19 had PTPN11 mutation alone and 4 had compound PTPN11 mutation, followed by NRAS mutation observed in 14 children (26%), among whom 12 had NRAS mutation alone and 2 had compound NRAS mutation. The 5-year overall survival (OS) rate was only 22%±10% in these children with JMML. Of the 63 children, 13 (21%) underwent hematopoietic stem cell transplantation (HSCT). The HSCT group had a significantly higher 5-year OS rate than the non-HSCT group (46%±14% vs 29%±7%, P<0.05). There was no significant difference in the 5-year OS rate between the children without PTPN11 gene mutation and those with PTPN11 gene mutation (30%±14% vs 27%±10%, P>0.05). The Cox proportional-hazards regression model analysis showed that platelet count <40×109/L at diagnosis was an influencing factor for 5-year OS rate in children with JMML (P<0.05).
		                        		
		                        			CONCLUSIONS
		                        			The PTPN11 gene was the most common mutant gene in JMML. Platelet count at diagnosis is associated with the prognosis in children with JMML. HSCT can improve the prognosis of children with JMML.
		                        		
		                        		
		                        		
		                        			Child
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Leukemia, Myelomonocytic, Juvenile/therapy*
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			Genetic Testing
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Hematopoietic Stem Cell Transplantation
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail