1.Anti-aging Effect of Ginseng Radix et Rhizoma:A Review
Hongrong LI ; Shixiong ZHANG ; Yawen LI ; Xuan LU ; Runtao ZHANG ; Xiaogang SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):196-207
Ginseng Radix et Rhizoma(GRR) has the function of replenishing vital energy and can lighten the body and prolong the life when taken for a long time, which is suitable for the development of anti-aging products, so this paper intends to sort out the progress of anti-aging research on GRR. After combing, the results of modern studies have shown that a variety of components in GRR have anti-aging effect, which can prolong the lifespan of aging animal models, as well as delay the aging of various systems. The anti-aging mechanisms mainly include anti-cellular senescence, anti-oxidative stress, inhibiting telomere shortening, maintaining mitochondrial homeostasis and so on. The anti-aging ingredients of GRR involved in the researches mainly include ginsenoside Rg1 and ginsenoside Rb1, in addition, ginsenoside Rg3, ginsenoside Rd, ginsenoside Rg2, ginsenoside Re, ginsenoside Rb2, oligosaccharides of GRR, polysaccharides of GRR, water extract of GRR, total saponins of Panax ginseng stems and leaves are also included. Therefore, under current background of population aging, the in-depth development of GRR and its transformation into anti-aging products are of great significance for delaying senility and improving the health conditions of aging population.
2.Exploration of Aging-Induced Cognitive Impairment Based on Qiluo Theory of Essence,Qi and Spirit
Yawen LI ; Hongrong LI ; Xuan LU ; Xiaogang SHEN ; Jiehan ZHANG ; Runtao ZHANG ; Kunxu NIU ; Shixiong ZHANG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(3):234-239
Cognitive dysfunction is the main manifestation of aging,which has become a hot topic of global concern as aging inten-sifies.This article proposes that essence is the origin of life,qi is the driving force of life,and spirit is the embodiment of life.Guided by the qiluo theory of essence,qi,and spirit,the key pathogenesis and corresponding treatment methods of cognitive impairment caused by aging are proposed:kidney essence deficiency and brain marrow insufficiency are the fundamental,primordial qi deficiency and brain meridian obstruction are the key,brain spirit dystrophy and spirit activity dysfunction are the manifestations;the treatment is to tonify the kidney and essence to fill brain marrow,warm and nourish primordial qi to unblock brain meridians,enhance brain sprit to improve spirit activity,expecting to be beneficial for delaying and preventing aging-caused cognitive impairment.
3.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
4.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
5.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
6.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
7.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
8.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
9.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
10.Clinical analysis of 16 cases of connective tissue disease-associated interstitial lung disease complicated with lung cancer
Guohua ZHANG ; Lingling ZHANG ; Lan GAO ; Junli LUO ; Yawen SHEN ; Lei LIU ; Yuhua WANG
Tianjin Medical Journal 2024;52(7):687-690
Objective To investigate the clinical characteristics of 16 patients with connective tissue diseases associated interstitial lung disease(CTD-ILD)complicated with lung cancer,and to improve the cognition of the disease.Methods Clinical data of 16 patients diagnosed as CTD-ILD associated with lung cancer,who were admitted to our center,were retrospectively analyzed,including general conditions,clinical characteristics,auxiliary examinations,pathological classification of lung cancer,TNM type,treatment and clinical outcome.Results Among the 16 CTD-ILD patients with lung cancer,there were 12 males and 4 females.The mean age at diagnosis of CTD-ILD was(64.7±9.2)years,and the mean age at diagnosis of lung cancer was(66.6±8.7)years.Lung occupying space on imaging(62.5%)was the most common initial symptom in lung cancer patients,followed by cough and phlegm(12.5%)and chest pain(12.5%).Of patients with lung cancer,adenocarcinoma(8 cases,50.0%)was the most common pathological type,followed by small cell lung cancer(4 cases,25.0%).The diagnosis time of CTD-ILD was earlier than that of lung cancer in 8 cases(50.0%),with a median time of 36.0(11.3,57.0)months,followed by 7 cases(43.8%)of CTD-ILD diagnosed with lung cancer at the same time.The diagnosis time of lung cancer was earlier than that of CTD-ILD in 1 case(6.3%).The most common TNM stage for lung cancer was stage Ⅳ(9 cases,56.25%).Sixteen patients were followed up from 1 to 64 months,with a median of 8.5(1.5,14.3)months.Eleven patients(68.8%)died,including 8 patients(72.7%)died of infection and 3 patients(27.3%)died of end-stage lung cancer.Conclusion For CTD-ILD patients,close follow-up and regular imaging monitoring are necessary to help early detection of lung cancer and improve prognosis.

Result Analysis
Print
Save
E-mail