1.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
2.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
3.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
4.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
5.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
6.Mitochondria-specific near-infrared photoactivation of peroxynitrite upconversion luminescent nanogenerator for precision cancer gas therapy.
Hui YU ; Aliya TIEMUER ; Xufeng YAO ; Mingyuan ZUO ; Hai-Yan WANG ; Yi LIU ; Xiaoyuan CHEN
Acta Pharmaceutica Sinica B 2024;14(1):378-391
Gas therapy is emerging as a highly promising therapeutic strategy for cancer treatment. However, there are limitations, including the lack of targeted subcellular organelle accuracy and spatiotemporal release precision, associated with gas therapy. In this study, we developed a series of photoactivatable nitric oxide (NO) donors NRh-R-NO (R = Me, Et, Bn, iPr, and Ph) based on an N-nitrosated upconversion luminescent rhodamine scaffold. Under the irradiation of 808 nm light, only NRh-Ph-NO could effectively release NO and NRh-Ph with a significant turn-on frequency upconversion luminescence (FUCL) signal at 740 nm, ascribed to lower N-N bond dissociation energy. We also investigated the involved multistage near-infrared-controlled cascade release of gas therapy, including the NO released from NRh-Ph-NO along with one NRh-Ph molecule generation, the superoxide anion O2⋅- produced by the photodynamic therapy (PDT) effect of NRh-Ph, and highly toxic peroxynitrite anion (ONOO‒) generated from the co-existence of NO and O2⋅-. After mild nano-modification, the nanogenerator (NRh-Ph-NO NPs) empowered with superior biocompatibility could target mitochondria. Under an 808 nm laser irradiation, NRh-Ph-NO NPs could induce NO/ROS to generate RNS, causing a decrease in the mitochondrial membrane potential and initiating apoptosis by caspase-3 activation, which further induced tumor immunogenic cell death (ICD). In vivo therapeutic results of NRh-Ph-NO NPs showed augmented RNS-potentiated gas therapy, demonstrating excellent biocompatibility and effective tumor inhibition guided by real-time FUCL imaging. Collectively, this versatile strategy defines the targeted RNS-mediated cancer therapy.
8.Robot-assisted pedicle screw internal fixation in treatment of atlantoaxial dislocation
Wenchuang CHEN ; Yong LI ; Yao LU ; Meiren ZHANG ; Haiyun CHEN ; Zhaoyu YU
Chinese Journal of Tissue Engineering Research 2024;28(36):5833-5838
BACKGROUND:Atlantoaxial dislocation,because of its high difficulty and high risk of surgery,has been regarded as the"surgical restricted area"by the international orthopedic community.However,with the rapid development of intelligent digitization in orthopedics,robot-assisted navigation screw placement technology has been widely used in clinical practice,which significantly reduces the difficulty and risk of surgery and improves the safety of surgery.However,there are few reports on the application of this technique in the treatment of atlantoaxial dislocation. OBJECTIVE:To explore the application value of robot-assisted pedicle screw internal fixation in the treatment of atlantoaxial dislocation. METHODS:The medical records of five patients with atlantoaxial dislocation treated with C1-C2 pedicle screw fixation under robot-assisted navigation in Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine from October 2021 to July 2022 were retrospectively analyzed.Operation time,length of neck incision,blood loss,postoperative drainage volume,and length of hospital stay were recorded.Attention should be paid to cerebrospinal fluid leakage,vertebral artery injury,nerve injury,operative area infection and other complications.The visual analog scale score of neck pain,the spinal cord injury grade of the American Spinal Injury Association,the cervical spine score of the Japanese Orthopaedic Association,and the imaging indicators were collected before surgery and at the last follow-up.Screw placement accuracy was assessed. RESULTS AND CONCLUSION:(1)Five patients were successfully completed surgery,without vascular,nerve injury or other complications,and were followed up for 12-20 months.(2)A total of 20 cervical pedicle screws were placed in 5 patients,including 9 type A screws,10 type B screws,and 1 type C screw.The accuracy of screw placement was 95%.(3)At the last follow-up,the visual analog scale score was(0.80±0.71)points,which was significantly lower than that before operation(4.00±2.83)points;the Japanese Orthopaedic Association score was(14.80±0.84)points,which was significantly higher than that before operation(8.00±0.71)points.Anterior atlantodental interval decreased from(7.86±3.25)mm to(2.82±0.93)mm;space available of the spinal cord increased from(6.74±1.99)mm to(12.10±3.51)mm;cervicomedullary angle increased from(133.32±13.55)° to(153.44±9.53)°;clivus-canal angle increased from(128.02±9.92)° to(143.25±12.99)°.The results of the last follow-up indexes were improved compared with those before operation,and the differences were significant(all P<0.05).(4)Postoperative imaging follow-up showed that all patients had bone fusion in the bone graft area,and no internal fixation loosening,fracture or pull-out occurred.(5)This method can avoid relying on the doctor's experience and hand feeling,ensure the accuracy of upper cervical screw placement,reduce the risk of surgery,and obtain satisfactory results in mid-term follow-up.
9.Effects of protein powder on the bioavailability of perfluoroalkyl substances in rat kidney
CAI Delei ; ZHENG Yibin ; XIA Yong ; ZHANG Shixin ; SONG Yanhua ; SHEN Haitao ; YAO Jin ; CHEN Qing
Journal of Preventive Medicine 2024;36(3):268-271
Objective:
To explore the effects of protein powder on the bioavailability of perfluoroalkyl substances (PFASs) in blood and kidneys of rats and renal function change.
Methods:
Twenty-four rats of the SD strain were randomly divided into the negative control group, PFASs group and protein powder group, with 8 rats (half males and half females) in each group. PFASs included 13 perfluorocarboxylic acids (PFCAs) and 8 perfluorosulfonic acids (PFSAs), and the mixture was used as a test subject for intervention. The rats in the negative control group were given deionized water at doses of 20 mL/kg·bw, in the PFASs group were given 5 mL/kg·bw of PFASs mixtures and 15 mL/kg·bw of deionized water, and in the protein powder group were given 5 mL/kg·bw of PFASs mixtures and 15 mL/kg·bw of protein powder (0.258 g/mL). After intervention for 28 successive days, body weight and kidney mass were weighed, and the kidney volume index was calculated. Serum creatinine and blood urea nitrogen were detected by an automatic biochemical analyzer. The PFCAs, PFSAs and PFASs contents were quantified in blood and kidney using ultra-high performance liquid chromatography-electrospray tandem mass spectrometry, and the bioavailability was estimated.
Results:
There was no significant differences in kidney mass, kidney volume index, serum creatinine and blood urea nitrogen among the negative control group, PFASs group and protein powder group (all P>0.05). The bioavailability of blood PFCAs, PFSAs and PFASs in the protein powder group was not significantly different from the PFASs group (all P>0.05). Compared with the PFASs group, the bioavailability of PFCAs, PFSAs and PFASs were significantly increased in kidneys of male rats in the protein powder group (all P<0.05), while were not significant different in those of female rats (all P>0.05).
Conclusion
Protein powder at the dose of this study can significantly improve the bioavailability of PFASs in kidneys of male rats, while there no obvious effects on the bioavailability of blood PFASs and renal function.
10.Effects of ligustrazine on cognitive function in mice with post-traumatic stress disorder
Ling GUO ; Yong-Quan CHEN ; Can LIU ; Wei-Dong YAO ; Yue YAO ; Ping-Ping CHENG ; Zhao-Fang LIU
The Chinese Journal of Clinical Pharmacology 2024;40(19):2880-2884
Objective To investigate the effect and mechanism of tetramethylpyrazine(TMP)on cognitive function in mice with post-traumatic stress disorder(PTSD).Methods The mice were randomly divided into normal group,model group and experimental group.Except for the normal group,the PTSD mouse model was established by single prolonged stress(SPS).The experimental group was intraperitoneally injected with 10 mg·kg-1 TMP,and the normal group and the model group were intraperitoneally injected with an equal amount of 0.9%NaCl.The Morris water maze,open field and elevated plus maze tests were used to evaluate the cognitive behavior of the mice.The apoptosis of neurons was detected by Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL).The expression of ionized calcium binding adapter molecule-1(Iba-1)protein was detected by immunofluorescence(ICC).The content of oxidative stress inflammatory factors was detected by enzyme-linked immunosorbent assay(ELISA).Results The escape latency of the normal group,model group,and TMP group were(56.50±9.89),(87.16±10.48)and(68.63±10.19)s,respectively;the corner residence time of the open field were(190.37±40.64),(260.39±40.54)and(218.63±38.27)s,respectively;the apoptosis rates were(18.28±2.35)%,(39.36±3.65)%and(30.74±3.58)%,respectively;the fluorescence intensities of Iba-1 were(8.01±2.23)%,(50.87±7.31)%and(7.49±1.41)%;malondialdehyde contents were(5.46±0.95),(12.98±2.06)and(8.31±1.28)nmol·mg-1,respectively;tumor necrosis factor-α contents were(53.59±9.91),(115.46±11.53)and(74.38±10.77)pg·mL-1,respectively.The above indexes in the normal group and the experimental group were statistically significant compared with the model group(P<0.05,P<0.01).Conclusion TMP can improve the cognitive function of PTSD mice,and the mechanism may be related to the regulation of inflammation and oxidative stress.


Result Analysis
Print
Save
E-mail