1.Treatment of Hyperuricemia and Gouty Arthritis by Buyang Huanwu Tongfeng Decoction via Inhibition of PPAR-γ/NF-κB/AGEs/RAGE Pathway Based on Network Pharmacology
Yue CAO ; Wanmei YAO ; Tao YANG ; Man YANG ; Ruimin JIA ; Rongrong LU ; Xue FENG ; Biwang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):182-192
ObjectiveThis paper aims to investigate the potential molecular biological mechanism of Buyang Huanwu Tongfeng decoction in treating hyperuricemia and gouty arthritis by network pharmacology and molecular docking technology and preliminarily verify the mechanism through animal experiments. MethodsThe active ingredients and targets in the Buyang Huanwu Tongfeng decoction were obtained by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and ETCM databases. The DisGeNET and GeneCards databases were utilized to acquire disease targets associated with hyperuricemia and gouty arthritis. These disease targets were then intersected with drug targets to identify key targets. The R language ClusterProfiler package and Python were employed for conducting gene ontology(GO) enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis. The regulatory network diagram of the drug-key target-function-pathway was visualized using Cytoscape 3.9.1 software, and the protein-protein interaction (PPI) network for key targets was depicted. Finally, the hub gene was determined through topological analysis. Auto Dock, PyMOL, and other software were used for molecular docking to explore the possible therapeutic mechanism of Buyang Huanwu Tongfeng decoction for hyperuricemia and gouty arthritis. In animal experiments, a composite rat model of hyperuricemia induced by intraperitoneal injection of oteracil potassium combined with gouty arthritis induced by the modified Coderre method was established. Through hematoxylin-eosin(HE) staining, uric acid test, enzyme linked immunosorbent assay(ELISA), Western blot, and real-time polymerase chain reaction(Real-time PCR), the molecular mechanism and key targets of Buyang Huanwu Tongfeng decoction for treating hyperuricemia and gouty arthritis were observed. ResultsAfter screening and removing duplicate values, 76 active ingredients and 15 key targets were finally obtained. GO enrichment analysis yielded that the treatment of hyperuricemia and gouty arthritis with Buyang Huanwu Tongfeng decoction was significantly associated with acute inflammatory response, astrocyte activation, regulation of interleukin (IL)-8 production, nuclear receptor activity, and binding of growth factor receptor. KEGG pathway enrichment analysis obtained that the key target genes were significantly associated with the IL-17 signaling pathway, advanced glycosylation end/receptor of advanced glycation endproducts(AGE/RAGE) signaling pathway, anti-inflammatory, and other pathways. PPI network indicated that albumin(ALB), peroxisome proliferator-activated receptor-γ (PPAR-γ), IL-6, IL-1β, and C-reactive protein(CRP) were the key protein targets. The molecular docking results showed that ALB had the strongest binding force with beta-carotene (β-carotene). Biochemical results showed that blood uric acid decreased in the Buyang Huanwu Tongfeng decoction groups. HE staining results showed that the low-dose (7.76 g·kg-1·d-1), medium-dose (15.53 g·kg-1·d-1), and high-dose (31.05 g·kg-1·d-1) groups of Buyang Huanwu Tongfeng decoction had different degrees of remission, and the remission of the high-dose group was the most obvious. Fibroblastic tissue hyperplasia in synovial joints accompanied with inflammatory cell infiltration, as well as inflammatory cell infiltration in renal tissue of the high-dose group was significantly reduced, followed by the medium-dose and low-dose groups, and the expression of ALB, PPAR-γ, IL-6, IL-1β, and CRP was down-regulated to different degrees. ConclusionBy regulating the targets such as ALB, PPAR-γ, IL-6, IL-1β, and CRP, inhibiting the PPAR-γ/nuclear transcription factor (NF)-κB pathway, and reducing AGEs/RAGE-mediated inflammation, Buyang Huanwu Tongfeng decoction exerts anti-inflammatory and analgesic effects and activates blood circulation and diuresis in the treatment of hyperuricemia and gouty arthritis.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Pharmacokinetic study of 3 blood-absorbed components of Xiangshao sanjie oral liquid in rats with hyperplasia of mammary gland
Yu ZHANG ; Jiaming LI ; Dan PENG ; Ruoqiu FU ; Yue MING ; Zhengbi LIU ; Jingjing WANG ; Shiqi CHENG ; Hongjun XIE ; Yao LIU
China Pharmacy 2025;36(6):680-685
OBJECTIVE To explore the pharmacokinetic characteristics of 3 blood-absorbed components of Xiangshao sanjie oral liquid in rats with hyperplasia of mammary gland (HMG). METHODS Female SD rats were divided into control group and HMG group according to body weight, with 6 rats in each group. The HMG group was given estrogen+progesterone to construct HMG model. After modeling, two groups were given 1.485 g/kg of Xiangshao sanjie oral liquid (calculated by crude drug) intragastrically, once a day, for 7 consecutive days. Blood samples were collected before the first administration (0 h), and at 5, 15, 30 minutes and 1, 2, 4, 8, 12, 24 hours after the last administration, respectively. Using chlorzoxazone as the internal standard, the plasma concentrations of ferulic acid, paeoniflorin and rosmarinic acid in rats were detected by UPLC-Q/TOF-MS. The pharmacokinetic parameters [area under the drug time curve (AUC0-24 h, AUC0-∞), mean residence time (MRT0-∞), half-life (t1/2), peak time (tmax), peak concentration (cmax)] were calculated by the non-atrioventricular model using Phoenix WinNonlin 8.1 software. RESULTS Compared with the control group, the AUC0-24 h, AUC0-∞ and cmax of ferulic acid in the HMG group were significantly increased (P<0.05); the AUC0-24 h, AUC0-∞ , MRT0-∞ , t1/2 and cmax of paeoniflorin increased, but there was no significant difference between 2 groups (P>0.05); the AUC0-24 h and MRT0-∞ of rosmarinic acid were significantly increased or prolonged (P<0.05). C ONCLUSIONS In HMG model rats, the exposure of ferulic acid, paeoniflorin and rosmarinic acid in Xiangshao sanjie oral liquid all increase, and the retention time of rosmarinic acid is significantly prolonged.
4.Analysis of Clinical Diagnosis and Traditional Chinese Medicine Medication Rule of Children with Nephrotic Syndrome in Single Center
Tingting XU ; Xia ZHANG ; Ying DING ; Long WANG ; Shanshan XU ; Yijin WANG ; Yue WANG ; Feiyu YAO ; Chundong SONG ; Wensheng ZHAI ; Xianqing REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):176-184
ObjectiveTo analyze the clinical treatment plan and traditional Chinese medicine (TCM) medication rule of children with primary nephrotic syndrome (PNS) in the First Affiliated Hospital of Henan University of Chinese Medicine. MethodsThe gender and age of children firstly diagnosed with nephrotic syndrome in the pediatric nephrology department of the First Affiliated Hospital of Henan University of Chinese Medicine from November 2019 to December 2022 were collected, and the use of immunosuppressive agents and related frequencies were counted. According to the inclusion and exclusion criteria, an independent TCM prescription database for children with nephrotic syndrome was established. Excel was used to analyze the relevant information of the literature. The frequency counting, association rule analysis, and cluster analysis were carried out on TCM in the prescription, and the high-frequent drugs were analyzed. Results(1) General information: A total of 711 children were included, consisting of 522 males (73.42%) and 189 females (26.58%). The ratio of male to female was about 2.76∶1. The disease mainly occurred in infants and preschool age, and the average age of onset was (4.74 ± 3.48) years old. (2) Clinical treatment plan and use of immunosuppressive agents: Of the 711 children with PNS, 237 were treated with hormone alone (32.33%), and 474 (66.67%) received immunosuppressive agents combined with hormones. In the initial treatment, hormone combined with Tacrolimus (TAC) was the preferred treatment (32.91%). For children with refractory PNS who exhibited poor clinical efficacy, Rituximab (RTX) was mostly used for treatment, with a ratio of up to 23.63%. (3) TCM syndrome and medication rule: In PNS syndrome differentiation, Qi and Yin deficiency was identified as the main syndrome. This involved a total of 477 cases, accounting for 67.09%. Yang deficiency of spleen and kidney was observed in 118 cases, accounting for 16.60%. A total of 711 children were included, of which 706 children were treated with TCM. This involved a total of 706 prescriptions, 226 TCM, and 9 793 frequencies. There were 30 herbs used more than 95 times. The top five TCM were Radix et Rhizoma Glycyrrhizae (81.16%), Radix Astragali (71.81%), Poria (68.84%), Rhizoma Atractylodis Macrocephalae (63.60%), and Fructus Corni (57.37%). The drug association rules and network diagram showed that the combination of ''Radix Astragali-Rhizoma Atractylodis Macrocephalae-Poria'' was the closest, and five types of combinations were obtained by cluster analysis. ConclusionIn the diagnosis and treatment of PNS in children, TAC combined with hormones shows good clinical efficacy and high safety. For children with refractory PNS, RTX combined with hormones can be used. TCM medication for PNS should follow the basic principles of strengthening the body and vital Qi and make good use of drugs such as Radix Astragali, Poria, Rhizoma Atractylodis Macrocephalae, and cornus to regulate the Yin and Yang balance and achieve better clinical efficacy.
5.Analysis of Clinical Diagnosis and Traditional Chinese Medicine Medication Rule of Children with Nephrotic Syndrome in Single Center
Tingting XU ; Xia ZHANG ; Ying DING ; Long WANG ; Shanshan XU ; Yijin WANG ; Yue WANG ; Feiyu YAO ; Chundong SONG ; Wensheng ZHAI ; Xianqing REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):176-184
ObjectiveTo analyze the clinical treatment plan and traditional Chinese medicine (TCM) medication rule of children with primary nephrotic syndrome (PNS) in the First Affiliated Hospital of Henan University of Chinese Medicine. MethodsThe gender and age of children firstly diagnosed with nephrotic syndrome in the pediatric nephrology department of the First Affiliated Hospital of Henan University of Chinese Medicine from November 2019 to December 2022 were collected, and the use of immunosuppressive agents and related frequencies were counted. According to the inclusion and exclusion criteria, an independent TCM prescription database for children with nephrotic syndrome was established. Excel was used to analyze the relevant information of the literature. The frequency counting, association rule analysis, and cluster analysis were carried out on TCM in the prescription, and the high-frequent drugs were analyzed. Results(1) General information: A total of 711 children were included, consisting of 522 males (73.42%) and 189 females (26.58%). The ratio of male to female was about 2.76∶1. The disease mainly occurred in infants and preschool age, and the average age of onset was (4.74 ± 3.48) years old. (2) Clinical treatment plan and use of immunosuppressive agents: Of the 711 children with PNS, 237 were treated with hormone alone (32.33%), and 474 (66.67%) received immunosuppressive agents combined with hormones. In the initial treatment, hormone combined with Tacrolimus (TAC) was the preferred treatment (32.91%). For children with refractory PNS who exhibited poor clinical efficacy, Rituximab (RTX) was mostly used for treatment, with a ratio of up to 23.63%. (3) TCM syndrome and medication rule: In PNS syndrome differentiation, Qi and Yin deficiency was identified as the main syndrome. This involved a total of 477 cases, accounting for 67.09%. Yang deficiency of spleen and kidney was observed in 118 cases, accounting for 16.60%. A total of 711 children were included, of which 706 children were treated with TCM. This involved a total of 706 prescriptions, 226 TCM, and 9 793 frequencies. There were 30 herbs used more than 95 times. The top five TCM were Radix et Rhizoma Glycyrrhizae (81.16%), Radix Astragali (71.81%), Poria (68.84%), Rhizoma Atractylodis Macrocephalae (63.60%), and Fructus Corni (57.37%). The drug association rules and network diagram showed that the combination of ''Radix Astragali-Rhizoma Atractylodis Macrocephalae-Poria'' was the closest, and five types of combinations were obtained by cluster analysis. ConclusionIn the diagnosis and treatment of PNS in children, TAC combined with hormones shows good clinical efficacy and high safety. For children with refractory PNS, RTX combined with hormones can be used. TCM medication for PNS should follow the basic principles of strengthening the body and vital Qi and make good use of drugs such as Radix Astragali, Poria, Rhizoma Atractylodis Macrocephalae, and cornus to regulate the Yin and Yang balance and achieve better clinical efficacy.
6.The Role of Golgi Apparatus Homeostasis in Regulating Cell Death and Major Diseases
Xin-Yue CHENG ; Feng-Hua YAO ; Hui ZHANG ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(8):2051-2067
The Golgi apparatus (GA) is a key membranous organelle in eukaryotic cells, acting as a central component of the endomembrane system. It plays an irreplaceable role in the processing, sorting, trafficking, and modification of proteins and lipids. Under normal conditions, the GA cooperates with other organelles, including the endoplasmic reticulum (ER), lysosomes, mitochondria, and others, to achieve the precise processing and targeted transport of nearly one-third of intracellular proteins, thereby ensuring normal cellular physiological functions and adaptability to environmental changes. This function relies on Golgi protein quality control (PQC) mechanisms, which recognize and handle misfolded or aberrantly modified proteins by retrograde transport to the ER, proteasomal degradation, or lysosomal clearance, thus preventing the accumulation of toxic proteins. In addition, Golgi-specific autophagy (Golgiphagy), as a selective autophagy mechanism, is also crucial for removing damaged or excess Golgi components and maintaining its structural and functional homeostasis. Under pathological conditions such as oxidative stress and infection, the Golgi apparatus suffers damage and stress, and its homeostatic regulatory network may be disrupted, leading to the accumulation of misfolded proteins, membrane disorganization, and trafficking dysfunction. When the capacity and function of the Golgi fail to meet cellular demands, cells activate a series of adaptive signaling pathways to alleviate Golgi stress and enhance Golgi function. This process reflects the dynamic regulation of Golgi capacity to meet physiological needs. To date, 7 signaling pathways related to the Golgi stress response have been identified in mammalian cells. Although these pathways have different mechanisms, they all help restore Golgi homeostasis and function and are vital for maintaining overall cellular homeostasis. It is noteworthy that the regulation of Golgi homeostasis is closely related to multiple programmed cell death pathways, including apoptosis, ferroptosis, and pyroptosis. Once Golgi function is disrupted, these signaling pathways may induce cell death, ultimately participating in the occurrence and progression of diseases. Studies have shown that Golgi homeostatic imbalance plays an important pathological role in various major diseases. For example, in Alzheimer’s disease (AD) and Parkinson’s disease (PD), Golgi fragmentation and dysfunction aggravate the abnormal processing of amyloid β-protein (Aβ) and Tau protein, promoting neuronal loss and advancing neurodegenerative processes. In cancer, Golgi homeostatic imbalance is closely associated with increased genomic instability, enhanced tumor cell proliferation, migration, invasion, and increased resistance to cell death, which are important factors in tumor initiation and progression. In infectious diseases, pathogens such as viruses and bacteria hijack the Golgi trafficking system to promote their replication while inducing host defensive cell death responses. This process is also a key mechanism in host-pathogen interactions. This review focuses on the role of the Golgi apparatus in cell death and major diseases, systematically summarizing the Golgi stress response, regulatory mechanisms, and the role of Golgi-specific autophagy in maintaining homeostasis. It emphasizes the signaling regulatory role of the Golgi apparatus in apoptosis, ferroptosis, and pyroptosis. By integrating the latest research progress, it further clarifies the pathological significance of Golgi homeostatic disruption in neurodegenerative diseases, cancer, and infectious diseases, and reveals its potential mechanisms in cellular signal regulation.
7.Single-cell Protein Localization Method Based on Class Perception Graph Convolutional Network
Hao-Yang TANG ; Xin-Yue YAO ; Meng-Meng WANG ; Si-Cong YANG
Progress in Biochemistry and Biophysics 2025;52(9):2417-2427
ObjectiveThis study proposes a novel single-cell protein localization method based on a class perception graph convolutional network (CP-GCN) to overcome several critical challenges in protein microscopic image analysis, including the scarcity of cell-level annotations, inadequate feature extraction, and the difficulty in achieving precise protein localization within individual cells. The methodology involves multiple innovative components designed to enhance both feature extraction and localization accuracy. MethodsFirst, a class perception module (CPM) is developed to effectively capture and distinguish semantic features across different subcellular categories, enabling more discriminative feature representation. Building upon this, the CP-GCN network is designed to explore global features of subcellular proteins in multicellular environments. This network incorporates a category feature-aware module to extract protein semantic features aligned with label dimensions and establishes a subcellular relationship mining module to model correlations between different subcellular structures. By doing so, it generates co-occurrence embedding features that encode spatial and contextual relationships among subcellular locations, thereby improving feature representation. To further refine localization, a multi-scale feature analysis approach is employed using the K-means clustering algorithm, which classifies multi-scale features within each subcellular category and generates multi-cell class activation maps (CAMs). These CAMs highlight discriminative regions associated with specific subcellular locations, facilitating more accurate protein localization. Additionally, a pseudo-label generation strategy is introduced to address the lack of annotated single-cell data. This strategy segments multicellular images into single-cell images and assigns reliable pseudo-labels based on the CAM-predicted regions, ensuring high-quality training data for single-cell analysis. Under a transfer learning framework, the model is trained to achieve precise single-cell-level protein localization, leveraging both the extracted features and pseudo-labels for robust performance. ResultsExperimental validation on multiple single-cell test datasets demonstrates that the proposed method significantly outperforms existing approaches in terms of robustness and localization accuracy. Specifically, on the Kaggle 2021 dataset, the method achieves superior mean average precision (mAP) metrics across 18 subcellular categories, highlighting its effectiveness in diverse protein localization tasks. Visualization of the generated CAM results further confirms the model’s capability to accurately localize subcellular proteins within individual cells, even in complex multicellular environments. ConclusionThe integration of the CP-GCN network with a pseudo-labeling strategy enables the proposed method to effectively capture heterogeneous cellular features in protein images and achieve precise single-cell protein localization. This advancement not only addresses key limitations in current protein image analysis but also provides a scalable and accurate solution for subcellular protein studies, with potential applications in biomedical research and diagnostic imaging. The success of this method underscores the importance of combining advanced deep learning architectures with innovative training strategies to overcome data scarcity and improve localization performance in biological image analysis. Future work could explore the extension of this framework to other types of microscopic imaging and its application in large-scale protein interaction studies.
8.Observation on the distribution of macular cone in healthy adult using adaptive optics scanning laser ophthalmoscope system
Yue ZHAO ; Tingting YANG ; Jin YAO
International Eye Science 2024;24(3):473-478
AIM: To observe the distribution of cone in the macular of healthy adult in different ages using adaptive optics scanning laser ophthalmoscope(AO-SLO)system, and analyze its relationship with age.METHODS: A total of 100 healthy examinees(200 eyes)in our hospital from June to July 2023 were selected, and they were divided into four groups according to their age, with 25 cases(50 eyes)in each group, including 18-30 years in group A, 31-40 years in group B, 41-50 years in group C, 51-65 years in group D. AO-SLO was performed in both eyes and cone density was measured.RESULTS: The density of cone in the foveal eccentricity of 3° and 2.4°×2.4° in each group was different(P<0.001), and the cone density in each area showed a relatively regular distribution characteristics, with the highest density in the temporal side, and the temporal>nasal>inferior>superior sides from high to low. The mean cone density in the macular area of both eyes was 14 144.38±1 082.40, 13 241.24±535.32, 12 930.29±727.73, and 10 907.50±490.86 cell/mm2, respectively(P<0.001), indicating that the cone density decreased with age. The correlation analysis showed that the mean cone density in the macular area was negatively correlated with age(r=-0.578, P<0.001).CONCLUSION: AO-SLO is a quantitative non-invasive detection of cones, and there is a negative correlation between cone density and age in healthy human. Furthermore, density of cone in healthy people over 50 years was significantly decreased.
9. Quercetin plays a neuroprotective role in inhibiting mitochondrial apoptosis by mediating JNK signaling pathway
Si-Fan YAO ; Xin ZHANG ; Yue-Ying DAI ; Li-Xia SHEN
Chinese Pharmacological Bulletin 2024;40(2):256-262
Aim To study the mechanism of quereetin (Que) inhibiting mitochondrial damage induced by Aβ
10.Interventional effect and mechanism of 1,8-cineole on pancreatic β cell ferroptosis induced by type 2 diabetes
Hong YANG ; Pengyan REN ; Yongxin CHEN ; Yuting YAO ; Shiquan GAN ; Jia LIU ; Tingting CHEN ; Bao ZHANG ; Xiangchun SHEN ; Yue LI
China Pharmacy 2024;35(3):290-295
OBJECTIVE To study the interventional effect and mechanism of 1,8-cineole on pancreatic β cell ferroptosis induced by type 2 diabetes. METHODS In vitro ferroptosis model was established in pancreatic β cells of mice by using high glucose. The effects of low-dose and high-dose 1,8-cineole (0.25, 0.5 μmol/L) on the level of Fe2+ in pancreatic β cells were investigated. The effects of 1,8-cineole (0.5 μmol/L) combined with ferroptosis inducer Erastin (20 μmol/L) and ferroptosis inhibitor Ferrostatin-1 (20 μmol/L) on the protein expressions of glutathione peroxidase-4 (GPX4) and cyclooxygenase-2 (COX2) were also detected. The type 2 diabetes model mice were established by feeding high-sugar and high-fat diet combined with intraperitoneal injection of streptozotocin. The effects of low-dose and high-dose 1,8-cineole (50, 200 mg/kg) on the pathological morphology of pancreatic tissue, the content of iron as well as the protein expressions of GPX4 and COX2 were investigated. RESULTS The results of the cell experiment showed that compared with the model group, pretreatment with 1,8-cineole significantly reduced intracellular Fe2+ levels and upregulated GPX4 protein expression, while downregulated COX2 protein expression in pancreatic β cells (P<0.05). After combining with Ferrostatin-1, the expression trends of the above two proteins were the same, while there was no statistically significant difference after combining with Erastin. The results of animal experiments showed that compared with the model group, after intervention with 1,8-cineole, the structure of the pancreatic islets in mice recovered intact and their morphology improved; the iron content of pancreatic tissue and protein expression of COX2 were decreased significantly (P<0.05), while protein expression of GPX4 was increased significantly (P<0.05). CONCLUSIONS 1,8-cineole could ameliorate pancreatic β cell injury induced by diabetes, the mechanism of which may be related to reducing intracellular iron deposition and regulating ferroptosis-related proteins.

Result Analysis
Print
Save
E-mail