1.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
2.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
3.N-acetylcysteine regulates NF-κB signaling pathway alleviates the pulmonary toxicity induced by indium-tin oxide nanoparticles in rats
Weikang LI ; Yi ZHANG ; Xiaoyu QU ; Yinqiao LIN ; Yanzi ZHAO ; Nan LIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(10):721-729
Objective:The current study aimed to evaluate the possible protective effects of N-acetylcysteine (NAC) against Indum-tin oxide (ITO) nanoparticle (Nano-ITO) -induced pulmonary alveolar proteinosis (PAP) in rats, especially via modulation of nuclear factor kappa B (NF-κB) signaling.Methods:In October 2019, 50 adult male Sprague-Dawley rats were randomly allocated into five groups (10 rats each) as follows: blank control group, saline control group, NAC control group (200 mg/kg), Nano-ITO group (receiving a repeated intratracheal dose of 6 mg/kg Nano-ITO) and NAC intervention group (pre-treated intraperitoneally with 200 mg/kg NAC 1.5 h before the administration of an intratracheal dose of 6 mg/kg Nano-ITO). The rats were exposed twice a week for 12 weeks. Rats were then euthanized under anesthesia, and their lungs were removed for histopathological and immunohistochemical analysis. The comparison of indicators reflecting oxidative stress and pulmonary inflammation among groups was conducted using one-way analysis of variance (ANOVA) and Bonferroni's test. The effect of NAC on Nano-ITO induced NF-κB signaling pathway in rats was analyzed.Results:Histopathological examination of Nano-ITO exposed rats revealed diffuse alveolar damage, including PAP, cholesterol crystals, alveolar fibrosis, pulmonary fibrosis, and alveolar emphysema. Immunohistochemical results of Nano-ITO exposed rats showed strong positive for nuclear factor κB p65 (NF-κB p65) and nuclear factor Kappa B inhibitory factor kinase (IKK-β) and weak positive for nuclear factor κB inhibitory protein α (IκB-α) in the nuclei of bronchiolar and alveolar epithelial cells. Compared with blank control group, saline control group and NAC control group, the level of total protein (TP) in bronchoalveolar lavage fluid of rats in Nano-ITO group was significantly increased ( P<0.05), and the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA) content and total antioxidant capacity (T-AOC) were significantly increased ( P<0.05), the levels of proinflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were significantly increased ( P<0.05), and the levels of NF-κB p65, IKK-β, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) in lung tissue were significantly increased ( P<0.05). Compared with Nano-ITO group, the levels of TP, T-AOC, MDA and TNF-α in bronchoalveolar lavage fluid of rats in NAC intervention group were significantly decreased ( P<0.05), and the levels of NF-κB p65 and ROS in lung tissue were significantly decreased (P<0.05). Western blot results showed that compared with the control groups, the protein expressions of NF-κB p65 and IKK-β in the lung tissue of Nano-ITO group were increased, while the protein expression of IκB-α was decreased ( P<0.05). Compared with Nano-ITO group, the protein expressions of NF-κB p65 and IKK-β in lung tissue of rats in NAC intervention group were decreased, while the protein expression of IκB-α was increased ( P<0.05) . Conclusion:The study demonstrated that Nano-ITO might induce pulmonary toxicity through the activation of NF-κB signaling pathway, and NAC could antagonize the pulmonary toxicity of Nano-ITO by inhibiting the NF-κB signaling pathway.
4.N-acetylcysteine regulates NF-κB signaling pathway alleviates the pulmonary toxicity induced by indium-tin oxide nanoparticles in rats
Weikang LI ; Yi ZHANG ; Xiaoyu QU ; Yinqiao LIN ; Yanzi ZHAO ; Nan LIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(10):721-729
Objective:The current study aimed to evaluate the possible protective effects of N-acetylcysteine (NAC) against Indum-tin oxide (ITO) nanoparticle (Nano-ITO) -induced pulmonary alveolar proteinosis (PAP) in rats, especially via modulation of nuclear factor kappa B (NF-κB) signaling.Methods:In October 2019, 50 adult male Sprague-Dawley rats were randomly allocated into five groups (10 rats each) as follows: blank control group, saline control group, NAC control group (200 mg/kg), Nano-ITO group (receiving a repeated intratracheal dose of 6 mg/kg Nano-ITO) and NAC intervention group (pre-treated intraperitoneally with 200 mg/kg NAC 1.5 h before the administration of an intratracheal dose of 6 mg/kg Nano-ITO). The rats were exposed twice a week for 12 weeks. Rats were then euthanized under anesthesia, and their lungs were removed for histopathological and immunohistochemical analysis. The comparison of indicators reflecting oxidative stress and pulmonary inflammation among groups was conducted using one-way analysis of variance (ANOVA) and Bonferroni's test. The effect of NAC on Nano-ITO induced NF-κB signaling pathway in rats was analyzed.Results:Histopathological examination of Nano-ITO exposed rats revealed diffuse alveolar damage, including PAP, cholesterol crystals, alveolar fibrosis, pulmonary fibrosis, and alveolar emphysema. Immunohistochemical results of Nano-ITO exposed rats showed strong positive for nuclear factor κB p65 (NF-κB p65) and nuclear factor Kappa B inhibitory factor kinase (IKK-β) and weak positive for nuclear factor κB inhibitory protein α (IκB-α) in the nuclei of bronchiolar and alveolar epithelial cells. Compared with blank control group, saline control group and NAC control group, the level of total protein (TP) in bronchoalveolar lavage fluid of rats in Nano-ITO group was significantly increased ( P<0.05), and the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA) content and total antioxidant capacity (T-AOC) were significantly increased ( P<0.05), the levels of proinflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were significantly increased ( P<0.05), and the levels of NF-κB p65, IKK-β, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) in lung tissue were significantly increased ( P<0.05). Compared with Nano-ITO group, the levels of TP, T-AOC, MDA and TNF-α in bronchoalveolar lavage fluid of rats in NAC intervention group were significantly decreased ( P<0.05), and the levels of NF-κB p65 and ROS in lung tissue were significantly decreased (P<0.05). Western blot results showed that compared with the control groups, the protein expressions of NF-κB p65 and IKK-β in the lung tissue of Nano-ITO group were increased, while the protein expression of IκB-α was decreased ( P<0.05). Compared with Nano-ITO group, the protein expressions of NF-κB p65 and IKK-β in lung tissue of rats in NAC intervention group were decreased, while the protein expression of IκB-α was increased ( P<0.05) . Conclusion:The study demonstrated that Nano-ITO might induce pulmonary toxicity through the activation of NF-κB signaling pathway, and NAC could antagonize the pulmonary toxicity of Nano-ITO by inhibiting the NF-κB signaling pathway.
5.New nor-ent-halimane and nor-clerodane diterpenes from Callicarpa integerrima with anti-MRSA activity
Mengru WANG ; Qi WANG ; Yanzi MA ; Aurang Muhammad ZEB ; Xiaoli LI ; Feng SHEN ; Weilie XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(11):1003-1010
Two new nor-ent-halimane diterpenes and three previously unreported nor-clerodane diterpenes,designated callicain-tides A-E(1-5),were isolated from Callicarpa integerrima.Compounds 1 and 2 feature a distinctive 5/6-membered ring system,while compounds 3-5 are characterized by progressively truncated carbon skeletons,containing 18,17,and 16 carbons,respectively.In addition,four known compounds 6-9 were also identified.Their structures were elucidated using advanced spectroscopic tech-niques,including nuclear magnetic resonance(NMR),high-resolution electrospray ionization mass spectrometry(HR-ESI-MS),ultra-violet(UV),infrared radiation(IR),optical rotatory dispersion(ORD),DP4+analysis and electronic circular dichroism(ECD),sup-ported by quantum chemical calculations.Compounds 1-9 were evaluated for their anti-MRSA activity.Among them,compound 6 demonstrated significant anti-MRSA activity,with a minimum inhibitory concentration(MIC)of 16 μg·mL-1.
6.Proteomic changes of vitreous from rhegmatogenous retinal detachment combined with choroidal detachment using data-independent acquisition
Pingping LI ; Mengyao HAN ; Rui ZHANG ; Fangyu CHEN ; Yanzi LI ; Jing YUAN ; Ning MA ; Zhaohui LI ; Lu LI ; Jianhua WU
Chinese Journal of Ocular Fundus Diseases 2024;40(10):758-765
Objective:To observe the proteomic changes in vitreous fluid samples from patients with rhegmatogenous retinal detachment combined with choroidal detachment (RRDCD).Methods:A prospective cross-sectional clinical study. Vitreous fluid samples were collected from 35 patients with RRDCD (RRDCD group) and 40 patients with rhegmatogenous retinal detachment (RRD group) who were diagnosed at Wuhan Aier Eye Hospital between November 2021 and December 2023. Prior to vitrectomy, 0.3-0.5 ml of vitreous fluid was collected from the affected eyes. Differentially expressed proteins were analyzed using Data-Independent Acquisition (DIA). Three of these proteins were randomly selected for validation using enzyme-linked immunosorbent assay (ELISA). Bioinformatics analyses, including gene ontology functional enrichment and kyoto encyclopedia of genes and genomes pathway enrichment, were performed to explore the functions of the differentially expressed proteins.Results:Significant differences were observed between the RRDCD and RRD groups in intraocular pressure ( t=-12.795), the number of retinal tears ( t=4.601), the extent of retinal detachment ( χ2=39.642), axial length ( t=0.840), postoperative proliferative vitreoretinopathy incidence ( χ2=4.730), single-surgery reattachment rate ( χ2=7.717), and best-corrected visual acuity ( t=7.033) at 6 months postoperatively ( P<0.05). A total of 237 differentially expressed proteins were identified between the RRDCD and RRD groups, with 63 upregulated and 174 downregulated. These proteins were involved in pathways such as extracellular matrix-receptor interaction, complement activation, coagulation, and lysosomal pathways. ELISA validation results showed that the expression trends of the three selected proteins in the RRDCD and RRD groups were consistent with the DIA proteomic analysis. Compared to the RRD group, proteins such as fibrin, coagulation factors, cathepsins, and trypsin inhibitors were significantly upregulated in the RRDCD group. Conclusions:The protein expression profile in vitreous fluid samples from RRDCD patients show significant alterations compared to the RRD group. These differential changes suggest that RRDCD is closely associated with complement and coagulation cascade activation, lysosomal pathways, and extracellular matrix remodeling.
7.Study on hypoglycemic effect and intestinal effect of Polygonatum sibiricum polysaccharides in diabetic mice
Qunli REN ; Xinqun ZHANG ; Miao WANG ; Xiaolan LI ; Yanzi YAO ; Yinghui RAN ; Qian WANG
Journal of Pharmaceutical Practice and Service 2022;40(6):510-514
Objective To study the hypoglycemic effect of Polygonatum sibiricum polysaccharides on type 2 diabetic mice and its effects on intestinal flora and pathological structure of small intestine. Methods Fifty male mice were used, except 10 were fed normally, the others were fed with high-fat and high-sugar diet for 6 weeks, and then injected with streptozotocin intraperitoneally to make type 2 diabetes mice model. After successful modeling, they were randomly divided into model group and Polygonatum sibiricum polysaccharides (500, 250, 125 mg/kg) group and the model group mice were given normal saline. The changes of bodyweight and blood glucose of mice in each group were recorded. After 4 weeks, feces were collected and sequenced by a 16S rRNA high-throughput sequencing, and the pathological changes of small intestine were observed by HE staining. Results In diabetic mice, the weight decreased. After given Polygonatum sibiricum polysaccharides, the weight of mice increased by 14.24%,11.97% and 8.78%, and the blood glucose decreased by 26.6%, 22.3% and 13.3%, respectively after high, medium and low doses of Polygonatum sibiricum polysaccharides were administered. In addition, the pathological disorder and swelling of intestinal histopathology were improved. There were significant differences in intestinal microorganisms between the model group and the Polygonatum sibiricum polysaccharides. Verrucomicrobiae in the model group increased significantly, while the microorganism abundance of Firmicutes and Bacteroidetes in the healthy group and Polygonatum sibiricum polysaccharides group was higher. Conclusion Polygonatum sibiricum polysaccharides has a significant hypoglycemic effect on diabetic mice and a certain protective effect on their intestines, the mechanism may be achieved by increasing the richness of beneficial bacteria and improving the immune function of mice, it’s in a certain dose-effect relationship, and its immune function needs further study.
8.The mechanism of ischemic preconditioning renal tubular cell-derived exosomes in the repair of renal ischemia-reperfusion injury in rats
Lixiang LI ; Yanzi ZHANG ; Yunpeng XU ; Zibin XU ; Xiaolu SUI ; Qicheng ZENG ; Jiefeng ZOU ; Shuzhen YUAN ; Tingfei XIE ; Jihong CHEN
Journal of Chinese Physician 2022;24(2):260-265
Objective:Clamping bilateral renal arteries with refined surgical methods to establish the rat renal ischemia-reperfusion injury (RIRI) model, and study the protective mechanism of ischemic preconditioning renal (IPC) tubular cell-derived exosomes in RIRI.Methods:25 female Sprague Dawley (SD) rats were divided into sham group, model group, inactivated group, normoxic group, IPC group. In the sham operation group, after bilateral renal arteries were dissociated, the back incision was disinfected and closed. The model group established RIRI model; RIRI models were established in inactivated group, normoxia group and IPC group, and then 200 μg of inactivated exosomes, normal exosomes and IPC exosomes were injected into the caudal vein 24 hours after operation. Serum creatinine (Scr) and urea nitrogen (BUN) levels were detected. The pathological changes of renal tissue were observed under light microscope. Transmission electron microscopy (TEM) was used to observe the shape and size of renal tubular exosomes. Nanoparticle tracking analysis (NTA)was used to detect the concentration and size of renal tubular exosomes.Results:Compared with the sham group, the Scr and BUN levels in the model group were significantly elevated ( P<0.01). Renal pathological changes in the model group showed damaged of the tubular structure, necrosis and shedding of tubular epithelial cells, and a large number of inflammatory cells accumulated in the renal interstitial tissue with varying degrees of edema. Compared with the inactivated group, the Scr and BUN levels significantly decreased in the normoxic group and IPC group ( P<0.01). Renal pathological changes in the normoxic group and IPC group showed that the renal tubular cell necrosis alleviated, inflammatory was reduced, the improved edema. Compared with the normoxic group, the Scr and BUN levels in the IPC group were further reduced ( P<0.01). Renal pathological changes in the IPC group showed that the inflammatory cells were significantly reduced, the cell edema was significantly improved, and the cell apoptosis was significantly reduced. Conclusions:Clamping bilateral renal arteries with refined surgical methods is the main and optimal way to build a rat model of RIRI. IPC tubular cell-derived exosomes have protective and repair effects on RIRI.
9.Comparison of clinical features of Omicron and Delta cases
Qixia ZHU ; Yanzi LI ; Leqian GUO ; Shanshan ZHANG ; Tingting HU ; Yuxin CHEN ; Hongxia LI
Journal of Xi'an Jiaotong University(Medical Sciences) 2022;43(5):797-800
【Objective】 To compare the clinical features of Omicron and Delta cases, so as to provide scientific basis for the prevention and treatment of COVID-19. 【Methods】 The case-control study method was used to retrospectively analyze the clinical data of the Omicron cases admitted to the designated hospital for the treatment of COVID-19 in Xi’an from December 2021 to January 2022. and the Delta cases admitted during the same period were used as the control group. The demographic data, epidemiological history, vaccination status, clinical characteristics, laboratory tests, nucleic acid and antibody levels, and outcomes of patients in the two groups were collected and compared. 【Results】 A total of 21 patients were included in the study, 5 were Omicron patients and 16 were Delta cases. The mean age of the patients in the two groups were (38.20±15.07) and (37.69±10.39) years, respectively.The time interval between the last vaccination and the diagnosis was (145.40±77.92) days and (159.00±99.74) days, respectively. For the initial symptoms, the patients with Omicron were mainly characterized by throat discomfort (3, 60%), cough and sputum (2, 40%), and the patients with Delta were mainly characterized by throat discomfort (5, 31.25%), fatigue (5, 31.25%), cough and sputum (4, 25%). On admission, laboratory tests showed that 60% of Omicron patients had low lymphocytes and elevated erythrocyte sedimentation rate, and 50% of patients in the delta group had elevated hemoglobin. The Ct values of ORFlab gene, N gene and E gene with Omicron were lower than those with Delta. And the difference of E gene between the two groups was statistically significant (t=-2.711, P=0.024). IgG antibody levels increased in both groups.The time for nucleic acid to turn negative with Omicron was (28.20±5.89) days, and it was (18.50±7.73) days with Delta, and the difference between the groups was statistically significant (t=2.565, P=0.019). The length of hospitalization with Omicron was (30.60±4.88) days, and that with Delta was (22.13±7.81) days, and the difference was statistically significant (t=2.270, P=0.035). 【Conclusions】 The initial symptoms of Omicron patients are mainly throat discomfort, cough and sputum. The clinical manifestations are generally mild. The nucleic acid test Ct value is lower. The time for nucleic acid to turn negative and the time for hospitalization are longer, and the potential infectiousness is stronger. Those eligible for vaccination should complete the full course of vaccination and booster vaccination as soon as possible. At the same time, the management of "early detection, early reporting, early isolation, and early treatment" should be implemented.
10.Information support practice for anti-COVID-19 consortium composed of multi-medical institutions’ staff
Hongwei CAI ; Fei LI ; Fule REN ; Tianxiang ZHANG ; Tingting HU ; Hezhen DUAN ; Baozhen LI ; Yanzi LI ; Jianfeng HAN
Journal of Xi'an Jiaotong University(Medical Sciences) 2022;43(5):658-662
In the emergency of the outbreak of COVID-19 in December 2019, Shaanxi Provincial Health Committee mobilized several medical teams from major hospitals in the province, and, by relying on Xi’an Chest Hospital, jointly established an anti COVID-19 consortium to control and eradicate the epidemic in a short time. Information support is an important guarantee for winning this battle. In order to realize the efficient cooperation among multiple medical teams, we have carried out some exploratory and innovative information support services on the basis of the original information system of the chest hospital. In this process, we have gone through some detours. Some compromises were made on some problems that could not be solved in the short term. Finally, in an environment full of uncertainty, a set of information support management system with basically smooth operation was built through rapid trial and error adjustment. The system mainly includes the following aspects: support of the organizational structure and operation process of the anti-epidemic consortium, support for medical collaboration related businesses of multiple medical teams, and support for statistical reports and online meetings. Information support has played a very important role in this action, and this practice has also accumulated experience for us to deal with similar situations in the future.

Result Analysis
Print
Save
E-mail