1.Characteristic Expression of Multiple Neurotransmitters Oscillation Imbabance in Brains of 1 028 Patients with Depression
Anqi WANG ; Xuemei QING ; Yanshu PAN ; Pingfa ZHANG ; Ying ZHANG ; Jian LI ; Cheng ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):278-286
ObjectiveTo analyze the characteristic expression patterns of six neurotransmitters including 5-hydroxytryptamine (5-HT), dopamine (DA), acetylcholine (ACh), norepinephrine (NE), inhibitory neurotransmitter (INH), and excitatory neurotransmitter (EXC) in the whole brain and different brain regions of depression patients by Search of Encephalo Telex (SET), providing new ideas for the study of heterogeneous etiology of depression. Methods(1) A retrospective study was conducted on supra-slow signals of EEG fluctuations in 1 028 patients with depression. The SET system was used to obtain the expression information of six neurotransmitters in the whole brain and 12 brain regions: left frontal region (F3), right frontal region (F4), left central region (C3), right central region (C4), left parietal region (P3), right parietal region (P4), left occipital region (O1), right occipital region (O2), left anterior temporal region (F7), right anterior temporal region (F8), left posterior temporal region (T5), and right posterior temporal region (T6). The expression information of each neurotransmitter was compared with the normal model, and it was found that single neurotransmitter was in one of three states: increased, decreased, or normal expression. The simultaneous expression states of six neurotransmitters in the brain space were referred to as the expression pattern of multiple neurotransmitters. (2) A MySQL database was established to analyze the actual expression patterns of different neurotransmitters in the whole brain of patients with depression. (3) Factor analysis was conducted to further analyze the characteristic rules of 78 variables of neurotransmitters in the whole brain and 12 brain regions in depression patients. Results(1) The expression of single neurotransmitters in the whole brain and different brain regions of the total depression population showed one of three expression states (increased/decreased/normal), being normal in the majority. The decreased and increased expression of 5-HT, ACh, DA, INH, EXC, and NE in the whole brain occurred in 6% and 25%, 31% and 17%, 36% and 9%, 15% and 31%, 32% and 14%, and 22% and 22%, respectively. (2) The antagonizing pairs of neurotransmitters (EXC/INH, DA/5-HT, and ACh/NE) showed significant antagonistic relationships in the whole brain and different brain regions, with a strong negative correlation between EXC and INH (P<0.01, |r| values ranging from 0.69 to 0.76), a strong negative correlation between DA and 5-HT (P<0.01, |r| values ranging from 0.83 to 0.90), and a moderate negative correlation between ACh and NE (P<0.01, with |r| values ranging from 0.56 to 0.66). Meanwhile, non-antagonizing pairs of neurotransmitters in the whole brain and different brain regions also showed correlations, with DA/NE (P<0.01, |r| values ranging from 0.38 to 0.46) and NE/EXC (P<0.01, |r| values ranging from 0.56 to 0.61) showing weak and moderate negative correlations, respectively, and DA/EXC showing a weak positive correlation (P<0.01, |r| values ranging from 0.38 to 0.47). (3) The six neurotransmitters in the 1 028 patients with depression presented a total of 170 expression patterns in the whole brain. The top 30 expression patterns were reported in this paper, with a cumulative rate of 60.60%, including patterns ① INH+/5-HT-/ACh+/DA+/NE-/EXC- (9.05%), ② INH+/5-HT-/ACh↓/DA+/NE-/EXC- (4.57%), and ③ INH+/5-HT-/ACh+/DA+/NE↓/EXC- (3.31%). That is, the proportion of depression patients with normal levels of all the six neurotransmitters was 9.05%, and the patients with at least one neurotransmitter abnormality accounted for 91.95%. (4) The factor analysis extracted 22 common factors from 78 variables in the whole brain and different brain regions. These common factors showed the absolute values of loadings ranging from 0.32 to 0.86 and the eigenvalues (F) ranging from 1.03 to 13.43, with a cumulative contribution rate of 76.82%. The characteristic expression patterns included ① AChP3↓/AChW↓/AChC3↓/AChF3↓/AChO1↓/AChT5↓/AChF7↓/NEP3↑/NEW↑/NEC3↑/NEF3↑/NEO1↑/NET5↑/NEF7↑ (F=13.43, whole brain), ② 5-HTO2↑/DAO2↓/5-HTP4↑/DAP4↓/5-HTW↑/DAW↓/5-HTC4↑/DAC4↓ (F=5.94), and ③ EXCF4↓/DAF4↓/NEF4↑/INHF4↑/5-HTF4↑/AChF4↓ (F=5.33). ConclusionThe actual 170 expression patterns of 6 neurotransmitters in the whole brain of 1 028 depression patients indicate that depression is a heterogeneous disease with individualized characteristics. The 22 characteristic expression patterns in the whole brain and 12 brain regions verify the pathogenesis hypothesis of multi-neurotransmitters oscillation imbalance in brains of depression patients. In summary, this study provides new guidance for the etiology, diagnosis, and treatment of depression and establishes a methodological foundation for the effectiveness evaluation of individualized treatment of depression by traditional Chinese medicine based on the objective biological markers.
2.Characteristic Expression of Multiple Neurotransmitters Oscillation Imbabance in Brains of 1 028 Patients with Depression
Anqi WANG ; Xuemei QING ; Yanshu PAN ; Pingfa ZHANG ; Ying ZHANG ; Jian LI ; Cheng ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):278-286
ObjectiveTo analyze the characteristic expression patterns of six neurotransmitters including 5-hydroxytryptamine (5-HT), dopamine (DA), acetylcholine (ACh), norepinephrine (NE), inhibitory neurotransmitter (INH), and excitatory neurotransmitter (EXC) in the whole brain and different brain regions of depression patients by Search of Encephalo Telex (SET), providing new ideas for the study of heterogeneous etiology of depression. Methods(1) A retrospective study was conducted on supra-slow signals of EEG fluctuations in 1 028 patients with depression. The SET system was used to obtain the expression information of six neurotransmitters in the whole brain and 12 brain regions: left frontal region (F3), right frontal region (F4), left central region (C3), right central region (C4), left parietal region (P3), right parietal region (P4), left occipital region (O1), right occipital region (O2), left anterior temporal region (F7), right anterior temporal region (F8), left posterior temporal region (T5), and right posterior temporal region (T6). The expression information of each neurotransmitter was compared with the normal model, and it was found that single neurotransmitter was in one of three states: increased, decreased, or normal expression. The simultaneous expression states of six neurotransmitters in the brain space were referred to as the expression pattern of multiple neurotransmitters. (2) A MySQL database was established to analyze the actual expression patterns of different neurotransmitters in the whole brain of patients with depression. (3) Factor analysis was conducted to further analyze the characteristic rules of 78 variables of neurotransmitters in the whole brain and 12 brain regions in depression patients. Results(1) The expression of single neurotransmitters in the whole brain and different brain regions of the total depression population showed one of three expression states (increased/decreased/normal), being normal in the majority. The decreased and increased expression of 5-HT, ACh, DA, INH, EXC, and NE in the whole brain occurred in 6% and 25%, 31% and 17%, 36% and 9%, 15% and 31%, 32% and 14%, and 22% and 22%, respectively. (2) The antagonizing pairs of neurotransmitters (EXC/INH, DA/5-HT, and ACh/NE) showed significant antagonistic relationships in the whole brain and different brain regions, with a strong negative correlation between EXC and INH (P<0.01, |r| values ranging from 0.69 to 0.76), a strong negative correlation between DA and 5-HT (P<0.01, |r| values ranging from 0.83 to 0.90), and a moderate negative correlation between ACh and NE (P<0.01, with |r| values ranging from 0.56 to 0.66). Meanwhile, non-antagonizing pairs of neurotransmitters in the whole brain and different brain regions also showed correlations, with DA/NE (P<0.01, |r| values ranging from 0.38 to 0.46) and NE/EXC (P<0.01, |r| values ranging from 0.56 to 0.61) showing weak and moderate negative correlations, respectively, and DA/EXC showing a weak positive correlation (P<0.01, |r| values ranging from 0.38 to 0.47). (3) The six neurotransmitters in the 1 028 patients with depression presented a total of 170 expression patterns in the whole brain. The top 30 expression patterns were reported in this paper, with a cumulative rate of 60.60%, including patterns ① INH+/5-HT-/ACh+/DA+/NE-/EXC- (9.05%), ② INH+/5-HT-/ACh↓/DA+/NE-/EXC- (4.57%), and ③ INH+/5-HT-/ACh+/DA+/NE↓/EXC- (3.31%). That is, the proportion of depression patients with normal levels of all the six neurotransmitters was 9.05%, and the patients with at least one neurotransmitter abnormality accounted for 91.95%. (4) The factor analysis extracted 22 common factors from 78 variables in the whole brain and different brain regions. These common factors showed the absolute values of loadings ranging from 0.32 to 0.86 and the eigenvalues (F) ranging from 1.03 to 13.43, with a cumulative contribution rate of 76.82%. The characteristic expression patterns included ① AChP3↓/AChW↓/AChC3↓/AChF3↓/AChO1↓/AChT5↓/AChF7↓/NEP3↑/NEW↑/NEC3↑/NEF3↑/NEO1↑/NET5↑/NEF7↑ (F=13.43, whole brain), ② 5-HTO2↑/DAO2↓/5-HTP4↑/DAP4↓/5-HTW↑/DAW↓/5-HTC4↑/DAC4↓ (F=5.94), and ③ EXCF4↓/DAF4↓/NEF4↑/INHF4↑/5-HTF4↑/AChF4↓ (F=5.33). ConclusionThe actual 170 expression patterns of 6 neurotransmitters in the whole brain of 1 028 depression patients indicate that depression is a heterogeneous disease with individualized characteristics. The 22 characteristic expression patterns in the whole brain and 12 brain regions verify the pathogenesis hypothesis of multi-neurotransmitters oscillation imbalance in brains of depression patients. In summary, this study provides new guidance for the etiology, diagnosis, and treatment of depression and establishes a methodological foundation for the effectiveness evaluation of individualized treatment of depression by traditional Chinese medicine based on the objective biological markers.
3.A multi-dimensional analysis of pollen broadcasting concerns in Chinese population: a large-scale multi-center cross-sectional survey
Chiyu XU ; Yanshu ZHANG ; Ning LUAN ; Xiangyi LIU ; Dayang QIN ; Hongmin WANG ; Xuping XIAO ; Shuihong ZHOU ; Jie ZHANG ; Ping ZHANG ; Yuqing BAI ; Pengpeng WANG ; Yan QI ; Zhongwu SUN ; Zhuang LIU ; Luo BA ; Wenchao WANG ; Xing LU ; Min WANG ; Rui GUO ; Deyi SUN ; Liyuan TAO ; Li ZHU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2024;59(1):2-11
Objective:To investigate the concern about pollen broadcasting in Chinese population from multiple dimensions and to understand the information about allergic rhinitis (AR) in China by analyzing related factors.Methods:From March 1 to September 30, 2022, a large-scale multi-center cross-sectional survey was conducted based on the Questionnaire Star platform in 21 Chinese hospitals. A total of 7 056 subjects from 7 regions in China: Northeast, North, East, Central, South, Southwest, and Northwest China were included. Basic characteristics (including social demographic characteristics and disease characteristics of AR patients), concern about pollen broadcasting, the willingness of pollen-induced AR (PiAR) patients to receive pollen broadcasting, and the treatment satisfaction rate of AR patients were collected. The chi-square test, multivariate linear regression model, and Logistic regression analysis were used to analyze the concern about pollen broadcasting in the Chinese population and related factors from multiple dimensions.Results:Among 7 056 subjects, 23.02% were concerned about pollen broadcasting. Among 3 176 self-reported AR and 1 019 PiAR patients, 25.60% and 39.16% were concerned about pollen broadcasting, respectively, which was higher than that of non-AR or non-PiAR subjects ( χ2 value was 21.74 and 175.11, respectively, both P<0.001). Among AR patients, the proportion of spring and autumn allergen-positive patients concerned about pollen broadcasting was higher than that in perennial allergen-positive patients ( χ2 value was 20.90 and 19.51, respectively, both P<0.001). The proportion of AR patients with asthma, sinusitis, allergic conjunctivitis, and cardiovascular and cerebrovascular diseases was higher than those without complications ( χ2 value was 50.83, 21.97, 56.78, 7.62, respectively, all P<0.05). The proportion of AR patients in North China who could find pollen broadcasting locally was 31.01%, significantly higher than those in other regions (all P<0.05). Multivariate linear regression model analysis showed that among PiAR patients, those with higher per capita household income and higher AR disease cognition levels had been concerned about pollen broadcasting in the past, and those complicated with allergic conjunctivitis had stronger intention to receive pollen broadcasting (B value was 0.24, 0.13, 0.66, 0.47, respectively, all P<0.05). The higher the disease cognition level of PiAR patients, the stronger their willingness to actively participate in treatment ( R2=0.72, P<0.001). Only 18.89% of AR patients felt satisfied with the treatment effect. Logistic regression analysis showed that in AR patients, the treatment satisfaction rate was significantly higher among those concerned about pollen broadcasting compared to those who were not ( OR=1.83, P<0.001). Conclusions:Currently, the dissemination of pollen broadcasting in China is hindered by various factors such as disease cognition level. The treatment satisfaction among AR patients remains unsatisfactory.
4.Intervention effect of HSP60 on learning and memory impairment induced by combined exposure to lead and hypertension in mice
Xinying LI ; Yi ZHU ; Peipei FENG ; Jian WANG ; Song CHEN ; Weixuan WANG ; Yujun WANG ; Yanshu ZHANG
China Occupational Medicine 2024;51(2):138-143
ObjectiveTo investigate the intervention effect of heat shock protein 60 (HSP60) on learning and memory impairment induced by combined exposure to lead and hypertension in mice, and the relative mechanism of triggering receptor expressed on myeloid cells 2 (TREM2). Methods Specific pathogen-free C57BL/6J male mice were randomly divided into control group, hypertension group, lead-exposed group and lead-exposed + hypertension group, or into control group, heat shock protein 60 (HSP60) control group, lead-exposed + hypertension group and HSP60 intervention group, with 10 mice in each group. Mice of hypertension group and lead-exposed + hypertension group were intraperitoneally injected with angiotensin Ⅱ at a dose of 0.5 mg/(kg·d) for seven consecutive days to induce hypertension model. Mice of the lead-exposed group, lead-exposed + hypertension group, and HSP60 intervention group were given lead acetate drinking water with a mass concentration of 250.0 mg/L, while mice in the control group, hypertension group, and HSP60 control group were given purified water for 12 weeks. Mice of the HSP60 control group and HSP60 intervention group were intraperitoneally injected with a solution of HSP60 at a dose of 4 mg/kg body weight, every other day for a total of three times at the 12th week. The learning and memory ability of mice was detected using the Morris water maze test. The enzyme-linked immunosorbent assay was used to detect the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the hippocampal tissues of the mice. The relative expression of ionized calcium binding adaptor molecule-1 (IBA1) and TREM2 protein in the hippocampus of mice was detected using Western blot. Results i) The number of platform crossings of the mice in the hypertension group and the lead-exposed group was lower than that in the control group (both P<0.05). The escape latency of the mice on the third day was longer and the number of platform crossings was lower in the lead-exposed + hypertension group compared with the control group, hypertension group and lead-exposed group (all P<0.05). The levels of IL-1β, IL-6, and TNF-α in the hippocampus of the other three groups increased compared with the control group (all P<0.05). The relative expression of IBA1 protein in the hippocampus of lead-exposed group and lead-exposed + hypertension group increased (all P<0.05), while the relative protein expression of TREM2 decreased compared with the control group (all P<0.05). The levels of IL-1β, IL-6, TNF-α, and the relative protein expression of IBA1 protein in the hippocampus of the lead-exposed+hypertension group were higher (all P<0.05), and relative expression of TREM2 protein was lower (P<0.05) than those in the hypertension group. The level of TNF-α and the relative expression of IBA1 protein in the hippocampus of lead-exposed+hypertension group were higher than those in lead-exposed group (all P<0.05). ii) The escape latency of mice in the lead-exposed + hypertension group was longer than that in the control group (P<0.05), and the number of platform crossings was fewer than that in the control group (P<0.05). The escape latency of mice in the HSP60 intervention group was shortened (P<0.05), the number of platform crossings increased (P<0.05), and the levels of IL-1β, IL-6, TNF-α and relative expression of IBA1 protein decreased in the hippocampus (all P<0.05), while the relative expression of TREM2 protein increased (P<0.05) compared with the lead-exposed+hypertension group. Conclusion Combined exposure of lead and hypertension has a synergistic effect on learning and memory impairment in mice. The mechanism may be related to the inhibition of TREM2 expression by lead in the hippocampus of hypertensive mice and aggravating the neuroinflammatory response. Intervention with TREM2 receptor agonist HSP60 can alleviate learning and memory impairment in mice exposed to lead and hypertension by up-regulating TREM2 expression in the hippocampus.
5.Impact of lead oxide nanoparticle exposure on the polarization of microglia cells in mouse hippocampus
Ye HAN ; Yang ZHANG ; Jiahui LI ; Liansheng ZHANG ; Jianbo WANG ; Han HAO ; Xinying LI ; Yuan YU ; Yanshu ZHANG
China Occupational Medicine 2023;50(4):378-385
Objective To investigate the effect of exposure to lead oxide nanoparticles (PbO NPs) on the polarization of microglia in mouse hippocampus. Methods i) Specific pathogen-free male C57 mice were randomly divided into control group, low-, medium- and high-dose groups, with 10 mice in each group. Mice in these three dose groups were intraperitoneally injected with PbO NPs suspension at doses of 5, 10 and 20 mg/kg per day, respectively, and mice in the control group were intraperitoneally injected with the same volume of 0.9% sodium chloride solution, five days per week for four weeks. ii) BV-2 cells were treated with PbO NPs at doses of 0.0, 2.5, 5.0 and 10.0 mg/L for 24 hours. iii) BV-2 cells were randomly divided into control group, PbO NPs group and triggering receptor expressed on myeloid cells 2 (TREM2) high expression + PbO NPs group. The cells in the control group received no treatment. The cells in PbO NPs group were exposed to 10.0 mg/L PbO NPs suspension for 24 hours. Cells in TREM2 high expression + PbO NPs group were transfected with Trem2 high expression plasmid, and then exposed to 10.0 mg/L PbO NPs suspension for 24 hours. iv) The mRNA expression of M1 markers [nitric oxide synthase (iNos), cyclooxygenase 2 (Cox2), chemokine receptor 7 (Ccr7)], M2 markers [arginin-1 (Arg-1), transforming growth factor-β (Tgf-β), chemokine receptor 2 (Ccr2)] and Trem2 of microglia was detected by real-time fluorescent quantitative polymerase chain reaction. The protein expression of iNOS, ARG-1 and TREM2 was detected by Western blotting. Results i) During the experiment, there was no significant difference in body weight of mice among these four groups (P>0.05). The relative expression of Cox2 and Ccr7 mRNA in the hippocampus of the mice increased in the low-dose group and the iNos, Cox2 and Ccr7 mRNA increased in the medium- and high-dose groups, compared with the control group (all P<0.05). The relative mRNA expression of Tgf-β in the hippocampus of the mice of low-dose group and Arg-1, Tgf-β and Ccr2 in the medium- and high-dose groups was decreased compared with the control group (all P<0.05). The mRNA relative expression of iNos, Cox2 and Ccr7 was increased (all P<0.05), while the mRNA relative expression of Arg-1, Tgf-β and Ccr2 was decreased (all P<0.05) in the hippocampus of the mice of high-dose group compared with the low-dose group. The relative expression of Trem2 mRNA and TREM2 protein in the hippocampus of mice of the medium- and high-dose groups was lower than those in the control group (all P<0.05). The relative expression of Trem2 mRNA and TREM2 protein in the hippocampus of mice of the high dose group was lower than those in the low- and the medium-dose groups (all P<0.05). With the increase of PbO NPs exposure dose, the relative expression of iNOS protein in hippocampus tissues of mice increased (P<0.01), and the relative expression of ARG-1 protein decreased (P<0.01). ii) With the increase of PbO NPs exposure dose, the relative expression of iNOS protein increased (P<0.01), and the relative expression of ARG-1 protein decreased (P<0.01) in BV-2 cells. The relative expression of iNOS protein in BV-2 cells of PbO NPs group and TREM2 high expression + PbO NPs group was increased (all P<0.05), and the relative expression of ARG-1 protein decreased (all P<0.05) compared with the control group. The relative expression of iNOS protein decreased (P<0.05), and the relative expression of ARG-1 protein increased (P<0.05) in BV-2 cells of TREM2 high expression + PbO NPs group compared with the PbO NPs group. Conclusion Exposure to PbO NPs could increase the M1 polarization and decrease the M2 polarization of microglia, with a dose-effect relationship. The M1 polarization of microglia decreased and M2 polarization increased after overexpression of Trem2 gene. The regulation of microglia polarization by TREM2 may be involved in the neurotoxic effects of PbO NPs.
6.The expression of adhesion molecules in Z310 cells induced by combined exposure to black carbon and lead
Hui CHEN ; Kun YANG ; Xiuyun ZHANG ; Peijia LI ; Shun TANG ; Yanshu ZHANG
China Occupational Medicine 2023;50(1):31-37
7.Effects of nano lead oxide exposure on cognitive function and inflammatory mechanism of leukocyte infiltration in mice
Yanshu ZHANG ; Fan SHI ; Junfeng WANG ; Zhijia FU ; Xinying LI ; Han HAO ; Weixuan WANG
Chinese Journal of Behavioral Medicine and Brain Science 2022;31(11):961-967
Objective:To investigate the effect of nano lead oxide (nano-PbO) exposure on learning and memory as well as spatial exploration ability in the mice, and the role of leukocyte infiltration of brain tissue in neurobehavioral damage caused by nano-PbO exposure.Methods:A total of 60 male SPF grade Kunming mice were divided into control group, low-dose nano-PbO group, medium-dose nano-PbO group and high-dose nano-PbO group according to body mass matching method, with 15 mice in each group.Mice in low, medium and high dose groups of nano-PbO were intraperitoneally injected with 5 mg·kg -1, 10 mg·kg -1, 20 mg·kg -1 nano-PbO, respectively. And mice in the control group were intraperitoneally injected with the same volume of 0.9% normal saline.The frequency of intervention was once a day for 28 days.Morris water maze test and open field test were used to detect the ability of learning and memory and spatial exploration of mice. Western blot was used to detect the protein expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in hippocampus of mice, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) in mouse microvessels and lymphocyte function-associated antigen-1 (LAF-1) in mouse blood leukocyte. The proportion of leukocytes in mouse brain was detected by flow cytometry. All statistical analyses were performed by SPSS 20.0. Morris water maze data were analyzed by repeated measures ANOVA, the other data among multiple groups were compared by one-way ANOVA, and Tukey's test was used for further pairwise comparison.Pearson correlation analysis was performed to evaluate the correlation between neurobehavioral indexes and the proportion of white blood cells, TNF-α and IL-1β in brain tissue. Results:Morris water maze results showed that the escape latency of the four groups of mice had a significant interaction between group and time( F=3.21, P<0.05). The escape latencies of mice in middle and high dose groups of nano-PbO were higher than that in the control group (both P<0.05), and the numbers of crossing the platform of the two groups were lower than that in the control group (both P<0.05). The results of open field test showed that there was a statistically significant difference in the residence time of the mice in the four groups ( F=119.10, P<0.01). The total standing times of mice in the middle group and high dose group of nano-PbO were lower than that in the control group (both P<0.01). The results of Western blot showed that the levels of TNF-α and IL-1β in hippocampus tissue of mice were significant differences among the four groups ( F=7.21, 9.89, both P<0.05). The levels of TNF-α and IL-1β in the hippocampus of mice in the high-dose nano-PbO group were higher than those in the control group (TNF-α: (0.35±0.10), (1.03±0.30), P<0.05; IL-1β: (0.32±0.10), (0.50±0.15), P<0.05). The results of flow cytometry analysis showed that the proportions of leukocytes in the brain tissue of mice in the low, medium and high dose groups of nano-PbO were (9.99±1.09)%, (13.03±0.94)% and (16.51±3.89)%, respectively. Among them, the proportions of leukocytes in the middle and high dose groups of nano-PbO were significantly higher than that in the control group((8.13±1.29)%) (both P<0.05). The results of correlation analysis showed that the proportion of leukocytes, levels of TNF-α, IL-1β protein of hippocampus in the medium, high dose groups of nano-PbO were negatively correlated with the behavioral indexes ( r=-0.815, -0.744, -0.578, all P<0.01; r=-0.771, -0.836, -0.704, all P<0.05; r=-0.823, -0.876, -0.695, all P<0.05). The results of Western blot showed that the levels of ICAM-1 and VCAM-1 in cerebral microvessels of mice in the four groups were significantly different ( F=5.51, 16.19, both P<0.05). The levels of ICAM-1 and VCAM-1 in the middle and high dose groups of nano-PbO were higher than those in the control group(ICAM-1: (1.07±0.16), (1.21±0.35), (0.59±0.19), all P<0.05; VCAM-1: (0.68±0.12), (1.92±0.23), (0.23±0.05), both P<0.05). In addition, there was a significant difference in the level of LFA-1 protein in blood leukocytes of mice in the four groups ( F=41.80, P<0.05). The levels of LFA-1 in the middle and high dose groups of nano-PbO were higher than that in the control group((0.33±0.06), (0.89±0.23), (0.05±0.01), both P<0.05). Conclusion:The nano-PbO exposure can lead to cognitive impairment and increased inflammatory factors in the hippocampus of mice, which may be related to the increase of ICAM-1 and VCAM-1 in vascular endothelial cells, which promotes leukocyte infiltration into brain tissue.
8.Mechanisms of ferroptosis in microglial cell line BV-2 cells after lead acetate exposure
Yuwei ZHAO ; Weixuan WANG ; Fan SHI ; Zhijia FU ; Tong WU ; Yanshu ZHANG
Journal of Environmental and Occupational Medicine 2022;39(8):895-901
Background Lead exposure induces microglial cell death, of which the mechanism is unclear. Ferroptosis is a new death form and its role in microglia death has not been reported. Objective To investigate the role of ferroptosis in microglia following lead exposure in order to provide a theoretical basis for the mechanism of lead neurotoxicity. Methods Microglial cell line BV-2 cells were co-cultured with 0, 10, 20 and 40 μmol·L−1 lead acetate for 24 h. The 40 μmol·L−1 lead acetate group with iron chelator (DFO) was named the 40+DFO group. Changes in BV-2 cell morphology after lead exposure were observed under an inverted microscope; tissue iron kit and glutathione kit were used to detect intracellular iron and glutathione (GSH) respectively; flow cytometry was applied to detect lipid reactive oxygen species (lipid ROS) immunofluorescence intensity. Western blotting and qPCR were adopted to detect the expressions of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), transferrin receptor 1 (TFR-1), divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1) protein and mRNA. Results Compared with the control group, the number of BV-2 cells decreased with increasing doses of lead and the cells showed a large, round amoeboid shape. The intracellular levels of iron of BV-2 cells were (1.08±0.04), (1.29±0.03), and (1.72±0.10) mg·g−1 (calculated by protein, thereafter) in the 10, 20, and 40 μmol·L−1 lead acetate groups, respectively, significantly higher than that in the control group (P<0.05), and the intracellular level of iron in the 40+DFO group, (1.34±0.10) mg·g−1, was lower than that in the 40 μmol·L−1 lead acetate group, (1.72±0.03) mg·g−1 (P<0.05). Compared with the control group, the TFR-1 and DMT1 protein and mRNA expressions were increased in BV-2 cells in the 10, 20, 40 μmol·L−1 lead acetate groups (P<0.05), especially in the 40 μmol·L−1 lead acetate group; the FPN1 protein expression did not change significantly, but the FPN1 mRNA expressions in BV-2 cells in the 10, 20, 40 μmol·L−1 lead acetate groups were significantly decreased (P<0.05). Compared with the control group, the intracellular GSH level decreased and the lipid ROS content increased in all three lead acetate groups; compared with the 40 μmol·L−1 lead acetate group, the GSH level increased by 12.30% and the lipid ROS content decreased by 13.00% in the 40+DFO group (P<0.05). The expressions of GPX4 protein were reduced to 50.00%, 35.00%, and 17.00% of that of the control group in the 10, 20, and 40 μmol·L−1 lead acetate groups respectively, while the expressions of GPX4 mRNA were also significantly reduced; the expressions of SLC7A11 protein and mRNA in the 20 and 40 μmol·L−1 lead acetate groups were lower than that in the control group, with the most significant decrease in the 40 μmol·L−1 lead acetate group (P<0.05). Conclusion Lead exposure could induce ferroptosis in BV-2 cells, in which iron transport imbalance and oxidative damage might be involved.
9.Experimental analysis of clinical applicability of individualized customized materials
Yun WANG ; Peihua GU ; Jiehua WANG ; Jinlan GONG ; Li CHEN ; Yanshu MU ; Xiaoxiao ZHANG ; Chang GUAN ; Lu WANG
Chinese Journal of Radiological Health 2022;31(5):601-605
Objective To study the feasibility of clinical application of an individualized customized material. Methods Five batches of individualized customized materials were randomly selected, from which 10 cm × 11 cm samples were intercepted for experimental analysis. Among them, 10 cm × 10 cm materials were selected to perform dosimetric analysis and HU change analysis before and after irradiation with a radiotherapy dose for breast cancer of 50 Gy as the irradiation basis. The center Point 1 on the lower surface of the individualized material and the center Point 2 of the solid water volume were selected for dosimetric analysis before and after the sample is irradiated. After reaching a sufficient amount of irradiation, the 1 cm × 10 cm materials intercepted in the center position and the remaining 1 cm × 10 cm materials after the first sampling were sent to the material science laboratory for analysis of physical properties of density, viscosity, hardness, and tear strength. Results In the comparative analysis of HU values before and after exposure, after receiving 50 Gy dose irradiation, the difference rate of HU value was 5.252%, which was close to the expected 5% difference rate in clinical medicine. In the dosimetric analysis of Point 1 and Point 2, the dose in the irradiated samples was significantly higher than that in the unirradiated samples; the dose in Point 1 increased by 3.742%, and the dose in Point 2 increased by 2.039%. Before and after irradiation, except for the physical density which showed a significant difference, there was no significant difference in viscosity, hardness, and tear strength. Conclusion The individualized customized material can meet the requirements of routine clinical medicine.
10. Effects of mobile application-based dietary intervention on weight loss and food addiction in overweight or obese people
Xi YANG ; Jianing LIU ; Yanshu CHEN ; Miao XU ; Qingyu ZHANG ; Yunfeng MI ; Li LI
Chinese Journal of Health Management 2020;14(1):55-61
Objective:
“Food addiction” may be one of the drivers of the obesity epidemic. Bariatric surgery-induced weight loss can significantly alleviate food addiction in overweight or obese people. Appetite regulation is part of the feedback control system for energy balance. The purpose of this study was to investigate the effects of mobile application-based dietary intervention on weight-loss and food addiction in overweight and obese adults.
Methods:
A total of 101 overweight or obese people aged over 18 years, who were admitted to the obese multidisciplinary clinic of Ningbo First Hospital from August 2015 to January 2018 were enrolled. All subjects received health education and dietary guidance, and submitted their diet log through the weight management application of their smartphone. Over 12 weeks, a dietitian guided and corrected the subjects who did not meet the diet standards. Interviews, physical examinations, laboratory tests, and the Yale Food Addiction Scale Questionnaire survey were administered before and after the intervention (12 weeks) comparing subjects’ weight, food addiction symptom count, and the proportion of food addiction before and after intervention. Statistical analysis of body composition measurements, blood biochemical parameters, and symptom count scores was performed using paired data


Result Analysis
Print
Save
E-mail