1.Herbal Textual Research on Malvae Semen in Famous Classical Formulas
Dongxue CHEN ; Yibo LIU ; Yangyang YU ; Guoshuai LYU ; Huili WU ; Xinle HAN ; Yue TAN ; Minhui LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):252-264
The medicinal use of Malvae Semen has a long history. In this paper, by consulting the ancient materia medica, prescription, agronomy, literature and other aspects of the classics, the name, origin, evolution of scientific name, quality, harvesting and processing, functions and indications and others of Malvae Semen were systematically sorted out and verified, so as to provide a basis for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shennong Bencaojing began to use Dongkuizi as the correct name, which was used in the past dynasties, and there were also aliases such as Kuicaizi, Huacai, and Kuizi. Through the original research, it can be seen that Kuicai is the mainstream original plant of Malvae Semen, that is, Malva verticillata var. crispa, the Alcea rosea and M. cathayensis are also used. In modern times, the seeds of Abutilon theophrasti have been passed off as Malvae Semen, while the seeds of M. verticillata var. crispa have rarely been used in medicine. And Abutili Semen has been another medicinal material with different efficacy since the collection of Newly Revised Materia Medica in the Tang dynasty. Since the Ming and Qing dynasties, the cultivation of Kuicai has been decreasing, while A. theophrasti is more common and easy to obtain, and Abutili Semen and Malvae Semen are similar in morphology and confused, which should be corrected. In addition, Malvae Fructus is a Mongolian customary medicinal herb, which is different from the traditional use of seeds in traditional Chinese medicine. Kuicai, as an important vegetable in history, was widely cultivated and gradually shrunk after the Song dynasty, it is now mainly produced in southern provinces. The quality evaluation of Malvae Semen is better for those with dry bodies, full grain, grayish brown color, no mud, and no impurities. The harvesting is generally in the autumn and winter. After drying, it is seeded, sieved peel and impurities, mashed, or slightly stir-fried to yellow-white color with gentle fire. It is sweet, cold and slippery in nature and taste, with the main effects of laxation, diuresis, lactation and elimination of swelling. The efficacy of Abutili Semen is clearing heat and removing toxicity, promoting diuresis and removing nebula, the efficacy is quite different from that of Malvae Semen. Based on the results of textual research, it is suggested that M. verticillata var. crispa should be used as the medicinal source of Malvae Semen in the development of famous classical formulas, the corresponding processing methods should be selected according to the requirements of drug processing in the formulas, while the raw products are recommended to be used if the processing is not specified.
2.Herbal Textual Research on Malvae Semen in Famous Classical Formulas
Dongxue CHEN ; Yibo LIU ; Yangyang YU ; Guoshuai LYU ; Huili WU ; Xinle HAN ; Yue TAN ; Minhui LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):252-264
The medicinal use of Malvae Semen has a long history. In this paper, by consulting the ancient materia medica, prescription, agronomy, literature and other aspects of the classics, the name, origin, evolution of scientific name, quality, harvesting and processing, functions and indications and others of Malvae Semen were systematically sorted out and verified, so as to provide a basis for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shennong Bencaojing began to use Dongkuizi as the correct name, which was used in the past dynasties, and there were also aliases such as Kuicaizi, Huacai, and Kuizi. Through the original research, it can be seen that Kuicai is the mainstream original plant of Malvae Semen, that is, Malva verticillata var. crispa, the Alcea rosea and M. cathayensis are also used. In modern times, the seeds of Abutilon theophrasti have been passed off as Malvae Semen, while the seeds of M. verticillata var. crispa have rarely been used in medicine. And Abutili Semen has been another medicinal material with different efficacy since the collection of Newly Revised Materia Medica in the Tang dynasty. Since the Ming and Qing dynasties, the cultivation of Kuicai has been decreasing, while A. theophrasti is more common and easy to obtain, and Abutili Semen and Malvae Semen are similar in morphology and confused, which should be corrected. In addition, Malvae Fructus is a Mongolian customary medicinal herb, which is different from the traditional use of seeds in traditional Chinese medicine. Kuicai, as an important vegetable in history, was widely cultivated and gradually shrunk after the Song dynasty, it is now mainly produced in southern provinces. The quality evaluation of Malvae Semen is better for those with dry bodies, full grain, grayish brown color, no mud, and no impurities. The harvesting is generally in the autumn and winter. After drying, it is seeded, sieved peel and impurities, mashed, or slightly stir-fried to yellow-white color with gentle fire. It is sweet, cold and slippery in nature and taste, with the main effects of laxation, diuresis, lactation and elimination of swelling. The efficacy of Abutili Semen is clearing heat and removing toxicity, promoting diuresis and removing nebula, the efficacy is quite different from that of Malvae Semen. Based on the results of textual research, it is suggested that M. verticillata var. crispa should be used as the medicinal source of Malvae Semen in the development of famous classical formulas, the corresponding processing methods should be selected according to the requirements of drug processing in the formulas, while the raw products are recommended to be used if the processing is not specified.
3.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
4.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
5.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
6.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
7.Effects of miR-204-3p inhibitor on epithelial-mesenchymal transition and silicosis fibrosis in silicon dioxide-induced alveolar epithelial cells
Fang CHEN ; Jing YU ; Wenxuan HU ; Yangyang PI ; Xi ZHANG ; Luning WANG ; Ping ZHAO ; Faxuan WANG
Journal of Environmental and Occupational Medicine 2025;42(5):622-629
Background The pathogenesis of silicosis has not been fully elucidated, and microRNAs (miRNA) may be involved in the occurrence and development of silicosis. Objective To investigate the effect of miR-204-3p inhibitor on the epithelial-mesenchymal transition (EMT) process and silicosis fibrosis in silicon dioxide dust-induced alveolar epithelial cells. Methods A co-culture model of macrophages and epithelial cells was established using a Transwell chamber. NR8383 macrophages were seeded into the upper chamber of the Transwell, and RLE-6TN cells were seeded into the lower chamber. After 24 h of culture, the medium in the lower chamber was discarded, washed three times with phosphate-buffered saline (PBS), and replaced with serum-free medium. The cells were divided into four groups: control group, silicosis group, miRNA NC group, and miR-204-3p inhibitor group. The lower chamber was transfected with miRNA NC for the miRNA NC group or the miR-204-3p inhibitor for the miR-204-3p inhibitor group. The lower chambers of the remaining two groups were added by equal amounts of serum-free medium. After 24 h, except for the control group that received an equal volume of serum-free medium, the upper chambers of the remaining three groups were treated with 800 μg·mL−1 silicon dioxide dust. Morphological changes in each group were observed under a microscope. The mRNA and protein expression levels of EMT-related factors, including α-smooth muscle actin (α-SMA), Vimentin, N-Cadherin, and E-Cadherin, were detected by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot. The mRNA and protein expression levels of fibrosis-related factors, including Collagen I, Collagen III, and Fibronectin, were also assessed by RT-qPCR and Western blot. The fluorescence expression intensities of α-SMA, N-Cadherin, and E-Cadherin were evaluated by immunofluorescence. Results The morphological observation revealed that RLE-6TN cells in the control group exhibited a regular oval shape. After treatment with silicon dioxide, the cells predominantly displayed a long spindle shape. Following the intervention with the miR-204-3p inhibitor, the number of long spindle-shaped cells increased, and the intercellular gaps widened. The RT-qPCR results showed that, compared with the control group, the silicosis group exhibited significantly higher relative mRNA expression levels of EMT-related markers (α-SMA, Vimentin, and N-Cadherin) (P<0.05), while the relative mRNA expression level of E-Cadherin was significantly reduced (P<0.05); the relative mRNA expression levels of fibrosis-related markers (Collagen I, Collagen III, and Fibronectin) were also significantly elevated (P<0.05). Compared with the miRNA NC group, the miR-204-3p inhibitor group showed significantly increased relative mRNA expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), decreased E-Cadherin mPNA expression (P<0.05), and elevated mPNA expression of Collagen I, Collagen III, and Fibronectin (P<0.05). The Western blot analysis indicated that, compared with the control group, the silicosis group had significantly higher protein expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), lower E-Cadherin protein expression (P<0.05), and increased protein expression of Collagen I, Collagen III, and Fibronectin (P<0.05). Compared with the miRNA NC group, the miR-204-3p inhibitor group exhibited significantly elevated protein expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), reduced E-Cadherin expression (P<0.05), and increased protein expression of Collagen I, Collagen III, and Fibronectin (P<0.05). The immunofluorescence analysis demonstrated that, compared with the control group, the silicosis group showed enhanced fluorescence intensities of α-SMA and N-Cadherin and reduced fluorescence intensity of E-Cadherin. Compared with the miRNA NC group, the miR-204-3p inhibitor group exhibited increased fluorescence intensities of α-SMA and N-Cadherin and decreased fluorescence intensity of E-Cadherin. Conclusion The miR-204-3p inhibitor may exacerbate the EMT process and silicosis fibrosis in silicon dioxide-induced RLE-6TN cells. miR-204-3p plays a negative regulatory role in silicosis fibrosis.
8.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
9.Research progress on Astragali Radix for promoting healing of chronic refractory wound
Yangyang YU ; Yuan GAO ; Jinling HE ; Hao WU ; Keyu CHEN ; Yuxing ZHAO
China Pharmacy 2025;36(19):2473-2478
Chronic refractory wound (CRW) presents significant clinical treatment challenges due to pathological characteristics such as persistent inflammation, bacterial infection, oxidative stress and inadequate angiogenesis. Astragali Radix, a traditional Chinese medicinal herb, exerts multi-target pharmacological effects on CRW through its active components, including Astragalus polysaccharides, flavonoids, and astragaloside Ⅳ, etc. Fundamental studies indicate that these components promote CRW healing by modulating inflammatory responses, inhibiting pathogen growth, improving antioxidant capacity and stimulating neovascularization. Network pharmacology and bioinformatics studies have revealed that active components of Astragali Radix target and modulate key signaling nodes such as nuclear factor-κB, phosphatidylinositol 3-kinase/Akt, AMP-activated protein kinase, and vascular endothelial growth factor receptor, as well as inflammation-angiogenesis-related pathways, thereby synergistically exerting anti-inflammatory and pro-angiogenic effect. Clinical applications have demonstrated that oral formulations (e.g., Huangqi guizhi decoction, Danggui huangqi decoction, etc.) reduce healing time of CRW and lower inflammatory marker levels, while topical preparations (e.g., Zizhu ointment, Huangqi shengji ointment, electrostatically spun Astragalus polysaccharide composite nanofibre dressings, etc.) significantly improve healing rates of CRW and minimize complications.
10.Intervention effect of miR-204-3P on silica dust-induced silicosis fibrosis in rats
Wenxuan HU ; Jing YU ; Fang CHEN ; Yangyang PI ; Ziming JIAO ; Faxuan WANG
Journal of Environmental and Occupational Medicine 2024;41(4):367-374
Background Long-term exposure to free silica particles will lead to fibrosis of lung tissue, and abnormal expression of microRNA (miRNA) may affect the occurrence and process of fibrosis. Objective To observed possible intervention effect of miR-204-3p overexpression adenovirus on silicosis fibrosis induced by silica dust using a silicosis rat model via non-exposed intratracheal instillation. Methods Forty SD rats were randomly divided into four groups: control group, silicosis model group, miRNA-NC group, and miR-204-3p intervention group. Under ether anesthesia, rats in the silicosis model group, miRNA-NC group, and miR-204-3p intervention group were injected with 1 mL (50 mg·mL−1) of free silica dust suspension into the trachea, while the control group was injected with the same volume of normal saline. After 30 d of dust exposure, the miR-204-3p intervention group was injected with rno-mir-204 adenovirus vector to overexpress miR-204-3p, and the miRNA-NC group was given empty virus vector. After 30 d of normal feeding, the animals were sacrificed by chloral hydrate anesthesia, and the lung tissue was taken for subsequent experiments. The relative expression level of miR-204-3p in lung tissue of rats in each group was detected by real-time fluorescence quantitative PCR (RT-qPCR). HE staining, Masson staining, and Sirius red staining were used for pathological observation. Immunohistochemistry was used to detect the expression of Fibronectin and Collagen I in lung tissue of rats in each group. RT-qPCR was used to detect the relative gene expression levels of fibrosis markers Fibronectin, Vimentin, Collagen I, and Collagen III in lung tissue of rats in each group. Western blot was used to detect the protein expression levels of fibrosis markers Fibronectin, Vimentin, Collagen I, and Collagen III in lung tissue of rats in each group. Results The anatomical features of lung tissue in the control group were pink lung tissue with soft texture and smooth surface, while those in the silicosis model were grayish white tissue with hard texture and scars and grayish white silicon nodules on the surface. Compared with the silicosis model group, the color of lung tissue in the miR-204-3p intervention group became ruddy, the surface was smooth, and the texture became soft. The staining results showed that the alveolar wall of the control group was thin, there were a small number of capillaries in the alveoli, and the alveolar structure was clear and complete. In the silicosis model group, the alveolar wall became thicker, the pulmonary septum was partially broken, the alveolar structure was defective, and a large amount of collagen fibers were deposited. The alveolar structure of the miR-204-3p intervention group was relatively clear and there was a small amount of collagen fiber deposition. RT-qPCR results showed that compared with the control group, the relative expression levels of miR-204-3p in lung tissue of the silicosis model group and the miRNA-NC group were decreased (P<0.05), and the relative expression level of miR-204-3p in lung tissue of the miR-204-3p intervention group was increased (P<0.05). The results of immunohistochemistry showed that compared with the control group, the expression levels of Fibronectin and Collagen I in lung tissue of the silicosis model group were increased (P<0.05). Compared with the silicosis model group, the relative expression levels of Fibronectin and Collagen I in lung tissue of the rats in the miR-204-3p intervention group were significantly decreased (P<0.05). The results of RT-qPCR and Western blot showed that compared with the control group, the relative protein and gene expression levels of fibrosis factors Fibronectin, Vimentin, Collagen I, and Collagen III in lung tissue of the silicosis model group increased (P<0.05). Compared with the silicosis model group, the relative gene and protein expression levels of fibrosis factors Fibronectin, Vimentin, Collagen I, and Collagen III in lung tissue of rats in the miR-204-3p intervention group were decreased (P<0.05). Conclusion Silica dust can cause lung fibrosis in rats, and overexpression of miR-204-3P in vivo can reduce silicosis fibrosis in rats caused by silica dust.

Result Analysis
Print
Save
E-mail