1.Comparison of Wild and Cultivated Alpiniae Oxyphyllae Fructus Based on Traditional Quality Evaluation
Fengfan WANG ; Yajie XIANG ; Jian FENG ; Wencheng HOU ; Wenlan LI ; Yangyang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):235-244
ObjectiveTo compare the differences between wild Alpiniae Oxyphyllae Fructus(WAOF) and cultivated Alpiniae Oxyphyllae Fructus(CAOF) through a traditional quality evaluation system for medicinal materials. MethodsA total of 10 batches of WAOF and 12 batches of CAOF samples were collected from various regions of Hainan province. Relevant analytical methods from the 2020 edition of the Pharmacopoeia of the People's Republic of China were employed to observe the characteristics of WAOF and CAOF, followed by microscopic identification, thin-layer chromatography(TLC) identification, moisture content(toluene method), total ash, acid-insoluble ash, water-soluble and alcohol-soluble extracts(hot dipping method), water-soluble protein, total polysaccharides and total flavonoids(ultraviolet spectrophotometry), and volatile oil content(method A under general rule 2204). The contents of five active components(protocatechuic acid, chrysin, kaempferol, tectochrysin and nootkatone) were quantified using ultra-performance liquid chromatography(UPLC), and the antioxidant activity was evaluated. Building upon traditional quality evaluation of AOF, quantitative measurements were conducted on its appearance traits including diameter, length, plumpness(diameter/length ratio), and color. Canonical correlation analysis was performed using SPSS 26.0 to explore relationships between appearance traits and intrinsic quality. ResultsNo significant differences were observed between WAOF and CAOF in microscopic observation, TLC identification, moisture content, protocatechuic acid content, kaempferol content, odor, or antioxidant activity measured by 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) method. WAOF exhibited significantly higher levels in water-soluble extracts, alcohol-soluble extracts, total polysaccharide content, water-soluble protein content, 100-grain weight, length, and total color difference(ΔE*ab) compared to CAOF(P<0.01). In contrast, CAOF showed significantly higher levels of total ash, acid-insoluble ash, content of total flavonoids, volatile oil content, chrysin content, tectochrysin content, nootkatone content, diameter, plumpness, lightness(L*), red-green chromaticity(a*), yellow-blue chromaticity(b*), and antioxidant activity measured by 1,1-diphenyl-2-picrylhydrazyl(DPPH) method compared to WAOF(P<0.01). Correlation analysis between 7 phenotypic traits and 8 quality traits revealed that among the phenotypic traits, plumpness, L*, a*, and b* exerted significant influence on intrinsic quality. Among the quality traits, total flavonoids, volatile oils, nootkatone, chrysin, and tectochrysin contributed substantially to intrinsic quality. ConclusionPlumpness, L*, a*, and b* of AOF significantly influence its intrinsic quality, and higher values of these parameters indicate relatively superior intrinsic quality. The comprehensive quality evaluation reveals that CAOF samples collected in this study are superior to their wild counterparts.
2.Association between core symptoms and biological markers in children with autism spectrum disorders
FEI Xianyan, WANG Rui, CHAI Yangyang, HE Xianming, ZHENG Shizhu
Chinese Journal of School Health 2026;47(1):125-128
Objective:
To explore the relationship between serum homocysteine (Hcy), interleukin-5 (IL-5), folate and core symptoms in children with autism spectrum disorders, so as to provide potential biomarkers for early diagnosis and intervention of diseases.
Methods:
A total of 106 children with autism spectrum disorders and 106 healthy children with matched sex and age in Lu an People s Hospital were enrolled as autism group and healthy group between May 2020 to December 2023. On the day of admission, levels of serum Hcy, IL-5 and folate were detected. The core symptoms in autism group were evaluated by Autism Behavior Checklist (ABC), Wechsler Preschool and Primary Scale of Intelligence-fourth edition(WPPSI-IV), Childhood Autism Rating Scale (CARS) and Social Responsiveness Scale (SRS). The levels of serum Hcy, IL-5 and folate in the two groups were compared by t- test. The relationship between serum Hcy, IL-5, folate and core symptoms in children with autism spectrum disorders was determined by Pearson correlation analysis.
Results:
The levels of serum Hcy and IL-5 in autism group were (7.48±0.32) μmol/L and (345.77±32.51) pg/mL, higher than those in healthy group [(6.11±0.54) μmol/L, (274.04±25.17) pg/mL], while folate level was lower than that in healthy group [(15.24±3.47) ng/mL, (22.51±4.69) ng/mL], the differences were statistically significant ( t =22.47, 17.96, 12.83, all P < 0.05 ). In autism group, levels of serum Hcy and IL-5 were positively correlated with scores of ABC, CARS and SRS ( r =0.29, 0.53 , 0.54; 0.45, 0.41, 0.50), while negatively correlated with WPPSI-IV score ( r =-0.28, -0.26)(all P <0.05). The folate level was negatively correlated with scores of ABC, CARS and SRS ( r =-0.55, -0.40, -0.25), while positively correlated with WPPSI-IV score ( r =0.41) (all P <0.05).
Conclusion
Children with ASD show elevated serum Hcy and IL-5 alongside decreased folate,and three markers correlate with core symptoms and intellectual level.
3.Xixintang-medicated Serum Regulates Aβ25-35-induced Polarization of BV-2 Microglial Cells
Chaokai YANG ; Yongchang DIWU ; Yangyang WU ; Xia XING ; Dengkun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):18-26
ObjectiveTo investigate the effects of Xixintang (XXT)-medicated serum on the amyloid β-protein (Aβ)25-35-induced polarization of BV-2 microglial cells by a cell experiment and uncover the potential mechanisms of this formula in the prevention and treatment of Alzheimer's disease (AD), thus providing scientific evidence for the clinical application of XXT. MethodsBV-2 microglial cells were subcultured. The optimal concentrations of XXT-medicated serum and Aβ25-35 were determined via the cell-counting kit-8 (CCK-8) assay. The cell experiment was carried out with the following groups: blank control, model (Aβ25-35 at 40 μmol·L-1), XXT-medicated serum (Aβ25-35 at 40 μmol·L-1 + 10% XXT-medicated serum), and blank serum (Aβ25-35 at 40 μmol·L-1 + 10% blank serum). After 24 hours of cell incubation, immunofluorescence was used to detect the expression of ionized calcium-binding adaptor molecule 1 (IBA1), CD16/32, and CD206. Real-time PCR was performed to measure the mRNA levels of CD206, CD163, inducible nitric oxide synthase (iNOS), and arginase 1 (Arg-1). Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of nerve growth factor (NGF), iNOS, and Arg-1. The nitric oxide (NO) concentration was determined via the nitrate reductase method. ResultsCompared with the blank control group, the model group showed increased expression of IBA1 and CD16/32 (P<0.01), decreased expression of CD206 (P<0.05), upregulation in the mRNA level (P<0.01) and content (P<0.05) of iNOS, downregulation in the mRNA levels of CD206, CD163, and Arg-1 (P<0.05, P<0.01), lowered levels of Arg-1 and NGF (P<0.05), and an elevation in the NO level (P<0.05). Compared with the model group, the XXT-medicated serum group exhibited reduced expression of IBA1 and CD16/32 (P<0.05, P<0.01) and increased expression of CD206 (P<0.01). Both the content and mRNA level of iNOS were downregulated (P<0.05, P<0.01), while the mRNA levels of CD206, CD163, and Arg-1 were upregulated (P<0.01) in the XXT-medicated serum group. In addition, the XXT-medicated serum group showed elevated levels of Arg-1 and NGF (P<0.05) and a lowered level of NO (P<0.05). The blank serum group showed no statistically significant differences in the measured parameters compared with the model group. ConclusionThe XXT-medicated serum can inhibit the polarization toward the M1 phenotype and promote the polarization toward the M2 phenotype, exerting anti-inflammatory and neurotrophic effects.
4.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
5.Adhesion,proliferation,and vascular smooth muscle differentiation of bone marrow mesenchymal stem cells on different electrospinning membranes
Xianjuan SUN ; Qiuhua WANG ; Jinyi ZHANG ; Yangyang YANG ; Wenshuang WANG ; Xiaoqing ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(4):661-669
BACKGROUND:Small diameter artificial vessels are urgently needed to treat coronary artery and peripheral artery diseases in clinical practice.At present,vascular tissue engineering has become the main method for preparing small diameter artificial vessels.Selecting suitable biomaterials and cell sources is the key factor for successful construction of small diameter tissue engineered vessels. OBJECTIVE:To observe the effect of four kinds of electrospinning membrane materials on proliferation,adhesion and differentiation of bone marrow mesenchymal stem cells into vascular smooth muscle cells. METHODS:Bone marrow mesenchymal stem cells were isolated and extracted from SD rats.The bone marrow mesenchymal stem cells were inoculated separately on polycaprolactone(PCL),polycaprolactone-hyaluronic acid(PCL-HA),polycaprolactone-silk-filament proteins(PCL-SF),and polycaprolactone-gelatin(PCL-GEL)electrospinning membrane materials.After 1,3,and 7 days of culture,the cell arrangement on the material was observed under scanning electron microscope.The proliferation and adhesion of the material were observed by phalloidin staining.The mRNA expressions of CD90,Meflin,and transforming growth factor β were detected by qRT-PCR.After 7 days of induced differentiation into vascular smooth muscle cells,the mRNA expression ofɑ-smooth muscle actin on the material was detected by qRT-PCR. RESULTS AND CONCLUSION:(1)Bone marrow mesenchymal stem cells were arranged along the fibers of the four kinds of electrospinning membranes under scanning electron microscopy.(2)Phalloidin staining showed the regular distribution of bone marrow mesenchymal stem cells on the four kinds of electrospinning membranes and parallel distribution along the fiber direction.Moreover,PCL-HA,PCL-SF,and PCL-GEL electrospinning membranes were more conducive to the proliferation and adhesion of bone marrow mesenchymal stem cells than PCL electrospinning membranes.Compared with PCL-HA and PCL-GEL electrospinning membranes,PCL-SF electrospinning membranes were more conducive to the proliferation and adhesion of bone marrow mesenchymal stem cells.(3)qRT-PCR showed that the four kinds of electrospun membrane materials could maintain the mRNA expression of CD90 and Meflin in bone marrow mesenchymal stem cells,but there was no significant difference between groups(P>0.05).The mRNA expression of transforming growth factor β in PCL-HA,PCL-SF,and PCL-GEL groups was higher than that in PCL group on days 1 and 7(P<0.05),and the mRNA expression of transforming growth factor β in PCL-SF group was higher than that in the other three groups on days 3 and 7(P<0.05).The mRNA expression of transforming growth factor β in PCL-HA group was higher than that in PCL-GEL group on day 7(P<0.05).(4)qRT-PCR showed that the mRNA expression of ɑ-smooth muscle actin in PCL-SF group was higher than that in the other three groups(P<0.05),and that in PCL-HA group was higher than that in PCL group(P<0.05).(5)The results indicate that compared with PCL,PCL-HA and PCL-GEL electrospinning membranes,PCL-SF electrospinning membranes combined with bone marrow mesenchymal stem cells are more suitable for the preparation of small diameter tissue engineered vessels.
6.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
7.Effects of Xixin Decoction (洗心汤)-Containing Serum on BV-2 Microglial Activation and Immune Inflammation Induced by Aβ25-35
Yangyang WU ; Yongchang DIWU ; Chaokai YANG ; Xia XING ; Dengkun WANG
Journal of Traditional Chinese Medicine 2025;66(7):717-723
ObjectiveTo explore the potential mechanism of Xixin Decoction (洗心汤, XD) in treating Alzheimer's disease (AD). MethodsXD-containing serum was prepared, and the BV-2 microglial cell viability was assessed using the CCK8 assay to determine the optimal intervention concentrations of XD-containing serum and amyloid-beta 25-35 (Aβ25-35) for subsequent experiments. BV-2 cells were divided into four groups, control group, model group (Aβ25-35), XD-containing serum group (Aβ25-35+ XD-containing serum), and blank serum group (Aβ25-35 + blank serum). After 24 hours of culture, the levels of interleukin-1β(IL-1β), cyclooxygenase-2 (COX-2), and arginase-2 (Arg-2) in the supernatent were detected by ELISA. Immunofluorescence staining was performed to detect the protein levels of ionized calcium-binding adaptor molecule 1 (IBA1), CD86, and CD206. RT-PCR was used to analyze the mRNA expression of IL-1β, interleukin-6 (IL-6), and interleukin-10 (IL-10). ResultsThe concentrations of 10% XD-containing serum and 40 μmol·L-¹ Aβ25-35 were selected for subsequent experiments. Compared to the control group, the model group showed significantly increased levels of IL-1β and COX-2 in the supernatant, as well as elevated protein expression of IBA1 and CD86 and increased mRNA expression of IL-1β and IL-6, while exhibiting significantly reduced levels of Arg-2 in the supernatant, CD206 protein expression, and IL-10 mRNA expression (P<0.05 or P<0.01). Compared to the model group, the XD-containing serum group showed significant improvement in all these indicators (P<0.01), whereas no statistically significant differences were observed in the blank serum group (P>0.05). ConclusionXD may regulate microglial activation, inhibit pro-inflammatory factors, and enhance anti-inflammatory factor release, thereby improving neuroimmune inflammation and inhibiting the progression of Alzheimer's disease.
8.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
9.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
10.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.


Result Analysis
Print
Save
E-mail