1.Role of Macrophage Activation and Polarization in Diabetes Mellitus and Its Related Complications and Traditional Chinese Medicine Intervention
Zhichao CHEN ; Qiaoni LIN ; Liya SUN ; Jinxi WANG ; Zishan FU ; Yufeng YANG ; Yan SHI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):311-320
The occurrence of diabetes mellitus (DM) is closely related to insulin resistance and islet β cell dysfunction. Modern studies have found that macrophages are widely present in the liver,fat,skeletal muscle,islets, and other tissues and organs. Macrophage M1/M2 polarization plays an important role in the occurrence and development of diabetes mellitus and its related complications by intervening in inflammatory response,improving insulin resistance,and promoting tissue repair. Most of the traditional Chinese medicines that regulate the activation and polarization of macrophages are Qi-replenishing and Yin-nourishing,heat-clearing, and detoxicating medicinal,which are consistent with the etiology and pathogenesis of diabetes and its related complications. Therefore,by summarizing the mechanisms between macrophage activation,polarization, and insulin resistance in various tissues,this paper reviewed traditional Chinese medicine and its effective components and compounds in improving diabetes mellitus and its related complications through multi-channel regulation of macrophage polarization and regulation of M1/M2 ratio,providing references for the future treatment of DM and its related complications with traditional Chinese medicine.
2.Efficacy of Fufang Lingjiao Jiangya Pills with Different Proportions of Goat Horn Replacing Antelope Horn on Spontaneous Hypertensive Rats
Tengjian WANG ; Wanlu ZHAO ; Yang YU ; Yan LIU ; Kun CAO ; Zheyuan LIN ; Yue WU ; Lilan LUO ; Weizhi LAI ; Zhaohuan LOU ; Qiaoyan ZHANG ; Quanlong ZHANG ; Luping QIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):68-78
ObjectiveTo investigate the optimal ratio of goat horn replacing antelope horn in Fufang Lingjiao Jiangya pills and the blood pressure-lowering mechanism of this medicine. MethodsThe blood pressure-lowering efficacy of Fufang Lingjiao Jiangya pills with varying proportions of goat horn replacing antelope horn was evaluated on spontaneous hypertensive rats (SHR). In this experiment, 50 SHR rats were randomly grouped as follows: model (n=8), captopril (0.01 g·kg-1) (n=6), low-dose blank Fufang Lingjiao Jiangya pills (0.342 g·kg-1) (n=6), high-dose blank Fufang Lingjiao Jiangya pills (0.684 g·kg-1) (n=6), low-dose antelope horn-containing Fufang Lingjiao Jiangya pills (0.378 g·kg-1) (n=6), high-dose antelope horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1) (n=6), low-dose goat horn-containing Fufang Lingjiao Jiangya pills (0.378 g·kg-1) (n=6), and high-dose goat horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1) (n=6). Additionally, 8 WKY rats were used as the normal group. Drugs were administered by gavage for 4 weeks while an equal volume of distilled water was administered for the normal and model groups. Blood pressure was measured before administration, 3 h post administration, and biweekly thereafter. In the experiment for Fufang Lingjiao Jiangya pills with goat horn replacing antelope horn in different proportions, 48 SHR rats were randomly grouped as follows: model, blank Fufang Lingjiao Jiangya pills (0.684 g·kg-1), antelope horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1), 2× goat horn-containing Fufang Lingjiao Jiangya pills (0.824 g·kg-1), 4× goat horn Fufang Lingjiao Jiangya pills (0.969 g·kg-1), and 6× goat horn Fufang Lingjiao Jiangya pills (1.112 g·kg-1). The normal group included 8 WKY rats, and the normal group and model group received an equal volume of distilled water. The treatment lasted for 2 weeks, and blood pressure was recorded at various time points (pre-administration, 3 h post administration, and on days 4, 7, 10, and 14 of administration). Serum levels of angiotensin-converting enzyme (ACE), angiotensin Ⅱ(Ang Ⅱ), renin, and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay. Histopathological changes in the heart, kidney, and thoracic aorta were observed by hematoxylin-eosin staining. The protein levels of ACE2, angiotensin Ⅱ type 1 receptor (AT1R), and angiotensinogen (AGT) in the kidney tissue were determined by Western blot, while the expression of nuclear factor (NF)-κB p65 and Toll-like receptor 4 (TLR4) in the thoracic aorta tissue was assessed by immunohistochemistry. ResultsCompared with the model group, all treatment groups showed lowered blood pressure (P<0.05, P<0.01), and the 6× goat horn-containing Fufang Lingjiao Jiangya pills group showed consistent blood pressure-lowering effect with the antelope horn-containing Fufang Lingjiao Jiangya pills group. Compared with the normal group, the model group showed elevated serum levels of ACE, Ang Ⅱ, renin, and IL-6, while the elevations were declined in the Fufang Lingjiao Jiangya pills groups (P<0.05, P<0.01). Pathological changes in the heart, kidney, and thoracic aorta were alleviated in all the treatment groups, with the 6× goat horn- and antelope horn-containing Fufang Lingjiao Jiangya pills groups exhibited the best effect. Western blot and immunohistochemistry results showed that all the treatment groups exhibited down-regulated protein levels of AT1R, AGT, NF-κB p65, and TLR4 and up-regulated protein levels of ACE2 (P<0.05, P<0.01) compared with model group, with the 6×goat horn- and antelope horn-containing Fufang Lingjiao Jiangya pills groups showcasing the best effect. ConclusionReplacing antelope horn with 6×goat horn in Fufang Lingjiao Jiangya pills can achieve consistent blood pressure-lowering effect with the original prescription. The prescription may exert the effect by inhibiting the renin-angiotensin-aldosterone system (RAAS) and TLR4/NF-κB signaling pathways.
3.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
4.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
5.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
6.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
7.Analysis of notifiable infectious diseases in Zhejiang Province in 2024
DING Zheyuan ; YANG Yan ; FU Tianying ; LU Qinbao ; WANG Xinyi ; WU Haocheng ; LIU Kui ; LIN Junfen ; WU Chen
Journal of Preventive Medicine 2025;37(5):433-438,442
Objective:
To investigate the epidemic situation of notifiable infectious diseases in Zhejiang Province in 2024, so as to summarize the epidemic characteristics.
Methods:
Data of notifiable infectious diseases cases in Zhejiang Province from January 1 to December 31, 2024 were collected from the Infectious Disease Surveillance System of Chinese Disease Prevention and Control Information System. The epidemiological characteristics were analyzed according to the classification and transmission routes using the descriptive epidemiological method.
Results:
A total of 32 types of notifiable infectious diseases with 1 858 695 cases and 392 deaths were reported in Zhejiang Province in 2024, with a reported incidence of 2 804.73/105 and a reported mortality of 0.591 5/100 000. A total of 238 infectious disease public health emergencies were reported, of which 218 (91.60%) occurred in schools and kindergartens. There were 22 types of class A and B notifiable infectious diseases reported, with incidence of 470.62/100 000 and mortality of 0.591 5/100 000. Totally 10 types of class C notifiable infectious diseases, with a reported incidence of 2 334.11/105, and no deaths were reported. Classified by transmission route, respiratory infectious diseases had the highest reported incidence of 2 423.87/100 000, among which influenza exhibited the highest reported incidence of 2 024.22/100 000. The reported incidence of intestinal infectious diseases was 312.94/105, among which the incidence of other infectious diarrhea and hand-foot-mouth disease (HFMD) were high, with reported incidences of 169.52/100 000 and 136.18/100 000, respectively. Blood-borne and sexually transmitted infectious diseases accounted for the largest number of reported deaths, among which AIDS had the highest mortality of 0.424 0/100 000. Natural and insect-borne infectious diseases exhibited a low reported incidence of 1.37/105. The reported incidence of dengue fever was 0.40/100 000, and 95.08% of the cases were imported.
Conclusions
The reported incidence of respiratory and intestinal infectious diseases and the reported mortality of AIDS were high in Zhejiang Province in 2024. It is recommended to strengthen the prevention and control of infectious diseases such as influenza, other infectious diarrhea, and HMFD in schools and kindergartens.
9. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.
10.Determination of the Contents of Three Lignans in Dendrobium fimbriatum Hook
Ying-Hua HUANG ; Lin ZHANG ; Jin-Yan LI ; Zhi-Bin LI ; Zhi-Yun LIANG ; Li-E YANG ; Gang WEI ; Yue-Chun HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):207-212
Objective To establish the method for content determination of three lignans of Dendrobium Fimbriatum Hook..Methods The lignans in Dendrobium tasselii were identified by high-performance liquid chromatography/multi-stage mass spectrometry(HPLC-ESI/MSn)coupled with ultraviolet absorption spectrometry(UV)coupled with retention time localization of high-performance liquid chromatography(HPLC).The separation was carried out on a Kromasil 100-5 C18 column(4.6 mm×250 mm,5 μm)using a gradient elution of acetonitrile-0.1%formic acid solution as the mobile phase,the volume flow rate was 0.8 mL·min-1 and the column temperature was 35℃,and the mass spectrometry was performed using an ESI ion source with the data collected in the negative ion mode.The HPLC content was determined on the same column as that of MS analysis,with the mobile phase methanol + acetonitrile(V/V=1∶1)-0.01 mol/L ammonium acetate solution,gradient elution,flow rate of 0.8 mL·min-1,column temperature of 40℃,and detection wavelength of 215 nm.Results Syringaresinol di-O-glucoside and(-)-Syringaresinol 4-O-β-D-glucopyranoside and DL-Syringaresinol were identified from Dendrobium fimbriatum Hook.,and the results of content determination showed that the linear ranges of above three components were respectively 0.1701-3.4020,0.1020-2.0400,0.0403-0.8060 μg(r≥0.9995),the average recoveries were in the range of 97.71%-101.67%,and the relative standard deviations(RSDs)were all less than 3.0%.The contents of Syringaresinol di-O-glucoside and(-)-Syringaresinol 4-O-β-D-glucopyranoside and DL-Syringaresinol in the 10 batches of samples were 0.7779-1.3852,0.0734-0.1966,0.0295-0.1882 mg·g-1.Conclusion This research method can provide a reference basis for the quality evaluation method of Dendrobium fimbriatum Hook..


Result Analysis
Print
Save
E-mail