1.Feiyanning Inhibits Invasion and Metastasis of Non-small Cell Lung Cancer by Regulating EMT via TGF-β1/Smad Signaling Pathway
Xiaojie FU ; Jia YANG ; Kaile LIU ; Wenjie WANG ; Zhenye XU ; Zhongqi WANG ; Haibin DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):110-120
ObjectiveTo explore the mechanism of the anti-cancer compound formula Feiyanning in inhibiting epithelial-mesenchymal transition (EMT) and invasion and metastasis of non-small cell lung cancer (NSCLC). MethodsCell proliferation and activity were assessed using the cell counting kit-8(CCK-8) assay to evaluate the effect of Feiyanning on the proliferation of A549 and H1299 cells. Wound healing and Transwell assays were conducted to examine Feiyanning's impact on the metastasis of A549 and H1299 cells. The effects of Feiyanning on EMT and the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway proteins in A549 and H1299 cells were detected by Western blot. Exogenous TGF-β1 was used to induce EMT in A549 and H1299 cells. The effects of Feiyanning on TGF-β1-induced NSCLC cell metastasis, EMT, and the TGF-β1/Smad pathway proteins were assessed by wound healing assay, Transwell assay, and Western blot. In vivo, an A549 lung metastasis model was established via tail vein injection in nude mice. A total of 28 SPF male nude mice were randomly divided into four groups: Model (NC) group, Feiyanning low-dose (FYN1) group, Feiyanning high-dose (FYN2) group, and the positive control group (TGF-β receptor kinase inhibitor SB431542 group). The corresponding interventions were performed. After 40 days, the mice were euthanized, and lung metastases were analyzed. The expression of E-cadherin, N-cadherin, p-Smad2, and p-Smad3 in each group was detected by immunohistochemistry (IHC). ResultsAfter Feiyanning intervention, compared to the blank group, Feiyanning inhibited the proliferation of A549 and H1299 cells in a concentration-dependent manner (P<0.01). The metastasis ability of Feiyanning-treated cells was significantly decreased compared to the blank group (P<0.01). The expression of EMT marker proteins N-cadherin and zinc finger transcription factors (Zeb1, Snail, Slug) was significantly reduced in the Feiyanning groups compared to the blank group (P<0.05, P<0.01). The expression of p-Smad2/3, Smad2/3, TβRI, and TβRⅡ, key proteins in the TGF-β1/Smad signaling pathway, was also significantly decreased (P<0.01). In the TGF-β1-induced EMT model, compared to the TGF-β1 group, the cell metastasis ability in the Feiyanning groups was reduced (P<0.01), and the expression levels of N-cadherin, Zeb1, Snail, and Slug were significantly lower (P<0.01). The expression levels of p-Smad2/3, Smad2/3, TβRI, and TβRⅡ were also significantly reduced (P<0.01). In vivo results showed that compared to the model group, the number of lung metastases in the FYN1, FYN2, and SB431542 groups was reduced (P<0.01), and the range of cell infiltration was narrowed. Immunohistochemical results showed that compared to the model group, the expression of E-cadherin in the FYN1, FYN2, and SB431542 groups was increased (P<0.01), the expression of N-cadherin decreased (P<0.05, P<0.01), and the expression of p-Smad2 and p-Smad3, key proteins of the TGF-β1/Smad pathway, was reduced (P<0.01). ConclusionFeiyanning inhibits the invasion and metastasis of NSCLC cells and EMT. The mechanism is related to the inhibition of TGF-β1/Smad signaling pathway.
2.Feiyanning Inhibits Invasion and Metastasis of Non-small Cell Lung Cancer by Regulating EMT via TGF-β1/Smad Signaling Pathway
Xiaojie FU ; Jia YANG ; Kaile LIU ; Wenjie WANG ; Zhenye XU ; Zhongqi WANG ; Haibin DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):110-120
ObjectiveTo explore the mechanism of the anti-cancer compound formula Feiyanning in inhibiting epithelial-mesenchymal transition (EMT) and invasion and metastasis of non-small cell lung cancer (NSCLC). MethodsCell proliferation and activity were assessed using the cell counting kit-8(CCK-8) assay to evaluate the effect of Feiyanning on the proliferation of A549 and H1299 cells. Wound healing and Transwell assays were conducted to examine Feiyanning's impact on the metastasis of A549 and H1299 cells. The effects of Feiyanning on EMT and the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway proteins in A549 and H1299 cells were detected by Western blot. Exogenous TGF-β1 was used to induce EMT in A549 and H1299 cells. The effects of Feiyanning on TGF-β1-induced NSCLC cell metastasis, EMT, and the TGF-β1/Smad pathway proteins were assessed by wound healing assay, Transwell assay, and Western blot. In vivo, an A549 lung metastasis model was established via tail vein injection in nude mice. A total of 28 SPF male nude mice were randomly divided into four groups: Model (NC) group, Feiyanning low-dose (FYN1) group, Feiyanning high-dose (FYN2) group, and the positive control group (TGF-β receptor kinase inhibitor SB431542 group). The corresponding interventions were performed. After 40 days, the mice were euthanized, and lung metastases were analyzed. The expression of E-cadherin, N-cadherin, p-Smad2, and p-Smad3 in each group was detected by immunohistochemistry (IHC). ResultsAfter Feiyanning intervention, compared to the blank group, Feiyanning inhibited the proliferation of A549 and H1299 cells in a concentration-dependent manner (P<0.01). The metastasis ability of Feiyanning-treated cells was significantly decreased compared to the blank group (P<0.01). The expression of EMT marker proteins N-cadherin and zinc finger transcription factors (Zeb1, Snail, Slug) was significantly reduced in the Feiyanning groups compared to the blank group (P<0.05, P<0.01). The expression of p-Smad2/3, Smad2/3, TβRI, and TβRⅡ, key proteins in the TGF-β1/Smad signaling pathway, was also significantly decreased (P<0.01). In the TGF-β1-induced EMT model, compared to the TGF-β1 group, the cell metastasis ability in the Feiyanning groups was reduced (P<0.01), and the expression levels of N-cadherin, Zeb1, Snail, and Slug were significantly lower (P<0.01). The expression levels of p-Smad2/3, Smad2/3, TβRI, and TβRⅡ were also significantly reduced (P<0.01). In vivo results showed that compared to the model group, the number of lung metastases in the FYN1, FYN2, and SB431542 groups was reduced (P<0.01), and the range of cell infiltration was narrowed. Immunohistochemical results showed that compared to the model group, the expression of E-cadherin in the FYN1, FYN2, and SB431542 groups was increased (P<0.01), the expression of N-cadherin decreased (P<0.05, P<0.01), and the expression of p-Smad2 and p-Smad3, key proteins of the TGF-β1/Smad pathway, was reduced (P<0.01). ConclusionFeiyanning inhibits the invasion and metastasis of NSCLC cells and EMT. The mechanism is related to the inhibition of TGF-β1/Smad signaling pathway.
3.Association between cannabis use and risk of gynecomastia: commentary on "Gynecomastia in adolescent males: current understanding of its etiology, pathophysiology, diagnosis, and treatment"
Jia-Lin WU ; Jun-Yang LUO ; Xin-Yi DENG ; Zai-Bo JIANG
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):52-53
4.Association between cannabis use and risk of gynecomastia: commentary on "Gynecomastia in adolescent males: current understanding of its etiology, pathophysiology, diagnosis, and treatment"
Jia-Lin WU ; Jun-Yang LUO ; Xin-Yi DENG ; Zai-Bo JIANG
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):52-53
5.Association between cannabis use and risk of gynecomastia: commentary on "Gynecomastia in adolescent males: current understanding of its etiology, pathophysiology, diagnosis, and treatment"
Jia-Lin WU ; Jun-Yang LUO ; Xin-Yi DENG ; Zai-Bo JIANG
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):52-53
6.A review of structural modification and biological activities of oleanolic acid.
Huali YANG ; Minghui DENG ; Hongwei JIA ; Kaicheng ZHANG ; Yang LIU ; Maosheng CHENG ; Wei XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):15-30
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.
Oleanolic Acid
;
Structure-Activity Relationship
;
Anti-Inflammatory Agents/pharmacology*
;
Triterpenes
;
Anti-Bacterial Agents/pharmacology*
7.Preparation and characterization of chitosan biguanide hydrochloride hydrogels loading mouse umbilical cord mesenchymal stem cells
Guodong DENG ; Jia YANG ; Yang LIU
Chinese Journal of Tissue Engineering Research 2024;28(13):1989-1995
BACKGROUND:With the in-depth research of hydrogel materials,the applicable fields of hydrogel have been gradually broadened,and carrying stem cells for disease treatment has become a new direction of research,but how to construct a hydrogel suitable for stem cell growth is the key problem that needs to be solved at present. OBJECTIVE:To investigate the physicochemical properties of chitosan-chitosan biguanide hydrochloride-collagen composite hydrogels and to evaluate their ability to load mouse umbilical cord mesenchymal stem cells. METHODS:The hydrogels were prepared by physically cross-linking chitosan,chitosan biguanide hydrochloride and collagen with the cross-linking agents β-glycerophosphate sodium and sodium bicarbonate,and the suitable hydrogels were screened according to the gel formation time and gel formation effect(noted as Gel-1,Gel-2 and Gel-3 in this way).Morphology,porosity,swelling properties,and degradability of the three groups of hydrogels were observed by scanning electron microscopy.Hemolysis experiments were performed to examine the hemolysis of the three groups of hydrogels.The mouse umbilical cord mesenchymal stem cells were co-cultured with the hydrogel with the best comprehensive performance of characterization.The cytotoxicity,cell survival and adhesion effect of the composite hydrogel were determined to evaluate the performance of this hydrogel loaded with umbilical cord mesenchymal stem cells. RESULTS AND CONCLUSION:(1)Scanning electron microscopy characterization results showed that all three groups had porous mesh structures inside,and the internal structure of Gel-2 and Gel-3 with the addition of chitosan biguanide hydrochloride was more porous and three-dimensional.(2)The hydrogel porosity of the Gel-3 group was higher than the remaining two groups,with high porosity and uniform pore size distribution.(3)The swelling performance of all three groups of hydrogels was above 100%,and the swelling performance of hydrogels with chitosan biguanide hydrochloride component was better.(4)The degradation rate of the three groups of hydrogels could be degraded by more than 90%in a time scale of 15 days,with good degradation performance.(5)The results of the hemolytic properties showed that the absorbance values measured by each group of hydrogels carrying chicken erythrocytes were basically the same as those of saline carrying chicken erythrocytes,and no hemolysis occurred.(6)The toxicity experiment and living and dead cell staining showed that the survival rate of umbilical cord mesenchymal stem cells in each group of hydrogels was above 100%,indicating that there was no obvious cytotoxicity.Umbilical cord mesenchymal stem cells could survive under the hydrogel package and the hydrogels had a positive effect on the survival rate of umbilical cord mesenchymal stem cells.(7)The cells in the umbilical cord mesenchymal stem cell adhesion assay can survive under the hydrogel package and can adhere to the surface of the hydrogel with normal morphology.
8.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
9.Spatiotemporal distribution characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans in PM2.5 in Pudong of Shanghai and population health assessment
Wanlian MAO ; Lijuan JIA ; Xiaoyu SHEN ; Xiaoqian CHEN ; Yuxin ZHU ; Pinchuan YANG ; Yunyun DENG
Journal of Environmental and Occupational Medicine 2024;41(5):482-488
Background In the Global Burden of Disease research, it has been found that atmospheric fine particulate matter (PM2.5) pollution significantly harms human health. Currently, there is limited research on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) that exhibit high toxicity effects in PM2.5 . Objective By studying the spatiotemporal distribution and variation characteristics of PCDD/Fs in PM2.5 in Pudong area of Shanghai, to assess the associated population health risk. Methods This study set up 28 sampling points in Pudong area. One sample of PM2.5 was collected during winter (February 2022) and summer (July 2022) at each site, with a sampling period lasting 24 h. The concentration of PM2.5 was measured by membrane filter method, and the content of 17 kinds of 2,3,7,8-substituted chlorinated PCDD/Fs in the samples was analyzed using isotope dilution. Seasonal variations (winter and summer) in the concentrations of PM2.5 and PCDD/Fs were evaluated, sources of PCDD/Fs pollution were tracing by principal component analysis, and health risks to the population from respiratory exposure to PCDD/Fs were estimated by VLIER-HUMAAN model. Results The PM2.5 concentrations in the 28 samples ranged from 10 to 126 μg·m−3, while the concentrations of PCDD/Fs in PM2.5 ranged from 58 to 2625 fg·m−3. The concentration of PM2.5 during winter (11-126 μg·m−3) was higher than that during summer (10-60 μg·m−3). The concentration range of PCDD/Fs in winter was from 58 to 2625 fg·m−3, which corresponded to a range of toxic equivalent quantity (WHO-TEQ) concentration from 2.99 to 40.97 fg·m−3 when taking World Health Organization's toxic equivalency factor (WHO-TEQ); the concentration range of PCDD/Fs in summer was from 72 to 446 fg·m−3, which corresponded to a range of WHO-TEQ concentration from 2.66 to 16.61 fg·m−3. This range in summer was significantly lower than that observed in winter. The results of principal component analysis revealed that waste incineration was the primary source of PCDD/Fs in winter PM2.5 in the area, whereas traffic emissions emerged as the main source in summer. The assessment of Pudong residents' respiratory exposure to PCDD/Fs in PM2.5 showed significantly higher exposure of children in summer and winter than that of adults, indicating higher susceptibility of children to air pollutants. Both the hazard ratios (HR) for children and adults were below 1, while the cancer risks (CR) ranged from 8.41×10−8 to 2.35×10−6. Notably, during winter, the CR at 4 locations slightly exceeds 1×10−6, indicating a potential carcinogenic risk. Conclusion The overall pollution level of PCDD/Fs in PM2.5 in Pudong area is relatively low, but it shows clear seasonal patterns. Waste incineration and traffic are the main sources of PCDD/Fs in PM2.5 in the area. Although the cancer risk of exposure to PCDD/Fs in PM2.5 for children or adults is relatively low, there is a certain risk at some locations in winter, necessitating additional monitoring and control.
10.Effect of ursodeoxycholic acid on symptoms after severe acute respiratory syndrome coronavirus 2 infection in patients with primary biliary cholangitis and their family members
Gui JIA ; Chunmei YANG ; Xiufang WANG ; Juan DENG ; Ruiqing SUN ; Linhua ZHENG ; Yulong SHANG ; Ying HAN
Journal of Clinical Hepatology 2024;40(7):1370-1374
Objective To investigate the effect of ursodeoxycholic acid(UDCA)on the symptoms after severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection in patients with primary biliary cholangitis(PBC)and their family member.Methods A questionnaire survey was conducted to collect related information from 171 PBC patients who attended The First Affiliated Hospital of Air Force Medical University before March 22,2023 and 128 family members,including demographic information,comorbidities,UDCA administration,SARS-CoV-2 infection,vaccination,symptoms,therapeutic medication,and the changes in liver disease-related symptoms.The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups,and the chi-square test or the Fisher's exact test was used for comparison of categorical data between two groups.Results The median age was 51 years in the PBC patients and 49 years in the family members,with no significant difference between the two groups(P>0.05).Compared with the family member group,the PBC group had significantly lower body mass index(22.2±2.4 kg/m2 vs 23.3±2.9 kg/m2,P<0.001)and proportion of male individuals(10%vs 55%,P<0.001).All PBC patients received UDCA at a dose of 13—15 mg/kg,and SARS-CoV-2 infection rate was 100%in both groups.The family members had a significantly higher SARS-CoV-2 vaccination rate than the PBC patients(91%vs 57%,P<0.001).Compared with the family members,the PBC patients had significantly milder symptoms of sneezing,nasal obstruction,chest pain,and abnormal taste(P<0.05).Compared with the family members,the PBC patients had significantly lower rates of use of compound cold medicine(11%vs 20%,P<0.05)and Lianhua Qingwen capsules(12%vs 21%,P<0.05).For the PBC patients after SARS-CoV-2 infection,the liver disease-related symptoms such as fatigue,abdominal distension,dry mouth and dry eyes,pruritus,and yellow skin were aggravated by 37%,2%,27%,10%,and 3%,respectively.Conclusion Compared with the immediate family members of PBC patients who do not take UDCA,the PBC patients receiving UDCA do not show a reduction in SARS-CoV-2 infection rate,but UDCA may have a certain effect on alleviating infection-related symptoms in such patients.PBC patients may still experience the aggravation of liver disease-related symptoms after SARS-CoV-2 infection,and the long-term effect on PBC patients after SARS-CoV-2 infection should be taken seriously in clinical practice.

Result Analysis
Print
Save
E-mail