1.Mechanism of Zuogui Jiangtang Jieyu Prescription Against Damage to Hippocampal Synaptic Microenvironment via Suppressing GluR2/Parkin Signal-mediated Mitophagy in Rats with Diabetes-related Depression
Jian LIU ; Lin LIU ; Xiaoyuan LIN ; Wei LI ; Yuhong WANG ; Hui YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):104-112
ObjectiveTo reveal the mechanism of Zuogui Jiangtang Jieyu prescription against damage to hippocampal synaptic microenvironment via suppressing glutamate receptor 2 (GluR2)/Parkin signal-mediated mitophagy in rats with diabetes-related depression (DD). MethodsEighty male SD rats underwent adaptive feeding for 5 days before the study. Ten rats were randomly assigned to the normal group. The model of DD rats was established with the rest by 2-week high-fat diet + streptozotocin (STZ) tail intravenous injection + 28 days of chronic unpredictable mild stress (CUMS) combined with isolation. The rats were randomly divided into a normal group, a model group, a GluR2 blocker group (5 μg·kg-1), a GluR2 agonist group (10 μg·kg-1), a metformin + fluoxetine group (0.18 g·kg-1 metformin + 1.8 mg·kg-1 fluoxetine), and high- and low-dose Zuogui Jiangtang Jieyu prescription groups (20.52 and 10.26 g·kg-1, respectively). The rats in the GluR2 blocker group and the GluR2 agonist group were continuously injected with CNQX and Cl-HIBO in the dentate gyrus of the hippocampus once a week starting from stress modeling, respectively, while the metformin + fluoxetine group and the high- and low-dose Zuogui Jiangtang Jieyu prescription groups were continuously given intragastric administration for 28 d at the same time of stress modeling. Depression-like behavior was evaluated by open field and forced swimming experiments. The levels of serum insulin and adenosine triphosphate (ATP) in hippocampus were detected by biochemical analysis. The levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The autophagosomes of hippocampal neurons were observed by transmission electron microscopy. The morphology and structure of dendrites and spines of hippocampal neurons were evaluated by Golgi staining. Western blot detected the expression levels of GluR2 and Parkin proteins in hippocampus. The expression levels of GluR2, Parkin, regulating synaptic membrane exocytosis protein 3 (RIMS3), and postsynaptic density protein 95 (PSD95) in the dentate gyrus of the hippocampus were detected by immunofluorescence. ResultsCompared with the normal group, the model group exhibited reduced total activity distance in the open field and increased immobility time in forced swimming (P<0.01), lowered levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.01), increased autophagosomes of hippocampal neurons, significantly damaged morphology and structure of dendrites and spines of hippocampal neurons, decreased expression levels of GluR2, RIMS3, and PSD95 in hippocampus, and an increased Parkin expression level (P<0.05, P<0.01). Compared with the model group, the GluR2 blocker group and the GluR2 agonist group showed aggravation and alleviation of the above abnormal changes, respectively (P<0.05, P<0.01). The above depression-like behavior was significantly improved in the high- and low-dose Zuogui Jiangtang Jieyu prescription groups to different degrees. Specifically, the two groups saw elevated levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.05, P<0.01), restrained increase in autophagosomes and damage to morphology and structure of dendrites and spines of hippocampal neurons, up-regulated protein expression levels of GluR2, RIMS3, and PSD95, and down-regulated Parkin expression level (P<0.05, P<0.01). ConclusionZuogui Jiangtong Jieyu prescription can ameliorate the mitophagy-mediated damage to hippocampal synaptic microenvironment in DD rats, the mechanism of which might be related to the regulation of GluR2/Parkin signaling pathway.
2.Emergency medical response strategy for the 2025 Dingri, Tibet Earthquake
Chenggong HU ; Xiaoyang DONG ; Hai HU ; Hui YAN ; Yaowen JIANG ; Qian HE ; Chang ZOU ; Si ZHANG ; Wei DONG ; Yan LIU ; Huanhuan ZHONG ; Ji DE ; Duoji MIMA ; Jin YANG ; Qiongda DAWA ; Lü ; JI ; La ZHA ; Qiongda JIBA ; Lunxu LIU ; Lei CHEN ; Dong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):421-426
This paper systematically summarizes the practical experience of the 2025 Dingri earthquake emergency medical rescue in Tibet. It analyzes the requirements for earthquake medical rescue under conditions of high-altitude hypoxia, low temperature, and low air pressure. The paper provides a detailed discussion on the strategic layout of earthquake medical rescue at the national level, local government level, and through social participation. It covers the construction of rescue organizational systems, technical systems, material support systems, and information systems. The importance of building rescue teams is emphasized. In high-altitude and cold conditions, rapid response, scientific decision-making, and multi-party collaboration are identified as key elements to enhance rescue efficiency. By optimizing rescue organizational structures, strengthening the development of new equipment, and promoting telemedicine technologies, the precision and effectiveness of medical rescue can be significantly improved, providing important references for future similar disaster rescues.
3.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
4.Effects of Exercise Training on The Behaviors and HPA Axis in Autism Spectrum Disorder Rats Through The Gut Microbiota
Xue-Mei CHEN ; Yin-Hua LI ; Jiu-Gen ZHONG ; Zhao-Ming YANG ; Xiao-Hui HOU
Progress in Biochemistry and Biophysics 2025;52(6):1511-1528
ObjectiveThe study explores the influence of voluntary wheel running on the behavioral abnormalities and the activation state of the hypothalamic-pituitary-adrenal (HPA) axis in autism spectrum disorder (ASD) rats through gut microbiota. MethodsSD female rats were selected and administered either400 mg/kg of valproic acid (VPA) solution or an equivalent volume of saline via intraperitoneal injection on day 12.5 of pregnancy. The resulting offspring were divided into 2 groups: the ASD model group (PASD, n=35) and the normal control group (PCON, n=16). Behavioral assessments, including the three-chamber social test, open field test, and Morris water maze, were conducted on postnatal day 23. After behavioral testing, 8 rats from each group (PCON, PASD) were randomly selected for serum analysis using enzyme-linked immunosorbent assay (ELISA) to measure corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) concentration, to evaluate the functional state of the HPA axis in rats. On postnatal day 28, the remaining 8 rats in the PCON group were designated as the control group (CON, n=8), and the remaining 27 rats in the PASD group were randomly divided into 4 groups: ASD non-intervention group (ASD, n=6), ASD exercise group (ASDE, n=8), ASD fecal microbiota transplantation group (FMT, n=8), and ASD sham fecal microbiota transplantation group (sFMT, n=5). The rats in the ASD group and the CON group were kept under standard conditions, while the rats in the ASDE group performed 6 weeks of voluntary wheel running intervention starting on postnatal day 28. The rats in the FMT group were gavaged daily from postnatal day 42 with 1 ml/100 g fresh fecal suspension from ASDE rats which had undergone exercise for 2 weeks, 5 d per week, continuing for 4 weeks. The sFMT group received an equivalent volume of saline. After the interventions were completed, behavioral assessments and HPA axis markers were measured for all groups. ResultsBefore the intervention, the ASD model group exhibited significantly reduced social ability, social novelty preference, spontaneous activity, and exploratory interest, as well as impaired spatial learning, memory, and navigation abilities compared to the normal control group (P<0.05). Serum concentration of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) in the PASD group were significantly higher than those in the PCON group (P<0.05). Following 6 weeks of voluntary wheel running, the ASDE group showed significant improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, spatial learning, memory, and navigation skills compared to the ASD group (P<0.05), with a significant decrease in serum CORT concentration (P<0.05), and a downward trend in CRH and ACTH concentration. After 4 weeks of fecal microbiota transplantation in the exercise group, the FMT group showed marked improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, as well as spatial learning, memory, and navigation abilities compared to both the ASD and sFMT groups (P<0.05). In addition, serum ACTH and CORT concentration were significantly reduced (P<0.05), and CRH concentration also showed a decreasing trend. ConclusionExercise may improve ASD-related behaviors by suppressing the activation of the HPA axis, with the gut microbiota likely playing a crucial role in this process.
5.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
6.Expression and functional study of FKBP10 in oral squamous cell carcinoma
FANG Zhikai ; JIN Hui ; YANG Shan ; JIANG Nan ; ZHANG Mingyu ; ZHOU Shuang ; LI Chang ; LI Lili
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(7):529-541
Objective:
To investigate the expression and functional role of FK506 binding protein 10 (FKBP10) in oral squamous cell carcinoma (OSCC), and to provide a research basis for the estimated prognosis and targeted therapy of OSCC.
Methods:
A total of 284 OSCC samples and 19 normal samples were selected from the Cancer Genome Atlas (TCGA) database, and diagnostic analysis was performed to determine mRNA expression. Survival analysis for FKBP10 and OSCC was conducted on a gene expression profile interaction analysis website. Real-time fluorescence quantitative PCR and Western Blot were used to detect the mRNA and protein expression of FKBP10 in four OSCC cell lines and SAS and SCC9 cells transfected with siRNA. The cell proliferation ability of FKBP10-silenced cells was detected using the CCK8 method, and the cell cycle distribution and apoptosis were detected by flow cytometry. Cell migration and invasion ability were detected through wound healing and invasion experiments. The expression changes of total protein and phosphatidylinositol 3-kinase (PI3K)-serine/threonine kinase (AKT) after FKBP10 silencing were analyzed by proteomics and Western Blot.
Results:
According to the analysis of gene expression levels, the mRNA expression level of FKBP10 in OSCC was significantly higher than that in normal tissues (P < 0.001). In terms of diagnosis, the expression level of FKBP10 has unique diagnostic value for OSCC (P < 0.05). The survival analysis of FKBP10 and OSCC showed that a high expression of FKBP10 led to a decrease in patient survival and poor prognosis (P < 0.05). The expression of FKBP10 mRNA and protein in OSCC cell lines was higher than that in normal oral keratinocytes (P < 0.001). Silencing FKBP10 can reduce the proliferation, invasion, and migration ability of SAS and SCC9 (P < 0.001), and also block their cell cycle in the G0/G1 phase (P < 0.001), with a significant increase in apoptosis (P < 0.05). Protein mass spectrometry and Western blot analysis revealed that FKBP10 silencing significantly downregulated the expression of multiple proteins in the RAP1 signaling pathway, mainly RAP guanine nucleotide exchange factor 1 (RAPGEF1) (P < 0.05) and the phosphorylation of PI3K-AKT proteins (P < 0.05).
Conclusion
FKBP10 is highly expressed in OSCC, leading to poor prognosis for patients. Downregulated FKBP10 expression can inhibit the proliferation, migration, and invasion ability of OSCC cells, hinder cell cycle progression, and promote apoptosis via the RAP1-PI3K-AKT axis. FKBP10 is a potential therapeutic target and prognostic biomarker for OSCC.
7.Risk factor analysis for postoperative pulmonary infections with multidrug-resistant bacteria in patients with oral squamous cell carcinoma undergoing flap repair surgery
WANG Qian ; PENG Hui ; ZHANG Liyu ; YANG Zongcheng ; WANG Yuqi ; PAN Yu ; ZHOU Yu
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(7):554-562
Objective:
To investigate the distribution patterns and risk factors for multidrug-resistant bacterial pulmonary infections in patients with oral squamous cell carcinoma (OSCC) undergoing flap reconstruction surgery, and to provide evidence for infection prevention and treatment in this population.
Methods:
This study was approved by the institutional medical ethics committee. We retrospectively analyzed sputum culture results, antimicrobial susceptibility testing data, and clinical records of 109 OSCC patients undergoing flap reconstruction. Chi-square tests were employed to identify pathogens and risk factors for multidrug-resistant bacteria (MDR) in postoperative pulmonary infections. Multivariate logistic regression analysis was conducted to determine MDR risk factors and establish a nomogram prediction model. The model’s discriminatory power, accuracy, and clinical utility were evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).
Results:
Among the 109 patients, 52 had negative sputum cultures and 57 tested positive, of whom 14 developed multidrug-resistant (MDR) pulmonary infections. Chi-square analysis revealed that blood transfusion, pre-existing pulmonary diseases, operation time ≥ 490 min, intraoperative blood loss ≥ 400 mL, and abnormal BMI were significant risk factors for postoperative MDR infections (P < 0.05). Multivariate logistic regression identified pre-existing pulmonary diseases, intraoperative blood loss ≥ 400 mL, abnormal BMI, and operative duration ≥ 490 min as independent risk factors for MDR infections (P < 0.05). The nomogram prediction model for MDR infections demonstrated an area under the ROC curve (AUC) of 0.874 (95% CI: 0.775-0.973). The calibration plot showed good agreement between predicted and observed outcomes. DCA indicated a net clinical benefit when the threshold probability for high-risk MDR infections ranged from 0.000 to 0.810. Common MDR pathogens included MDR Pseudomonas aeruginosa, MDR Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii (CRAB), and methicillin-resistant Staphylococcus aureus (MRSA).
Conclusion
Among OSCC patients undergoing flap reconstruction, MDR pulmonary infections were predominantly caused by gram-negative bacteria (including CRAB, MDR Pseudomonas aeruginosa, and MDR Klebsiella pneumoniae along with the gram-positive pathogen MRSA. Pre-existing pulmonary comorbidities, prolonged surgery duration (≥ 490 min), significant intraoperative blood loss (≥ 400 mL), and abnormal BMI were confirmed as independent risk factors for these MDR infections. The nomogram predictive model incorporating these four variables demonstrated clinically reliable accuracy in risk stratification for postoperative MDR pulmonary infections in this patient population.
8.Analysis of health-related lifestyles among primary and secondary school students in nutrition improvement program regions of China between 2021 and 2023
Chinese Journal of School Health 2025;46(6):788-791
Objective:
To analyze the features of unhealthy lifestyle patterns among primary and secondary school students in the nutrition improvement program for rural compulsory education students (NIPRCES) areas in China in 2021 and 2023, so as to provide data support for lifestyle promotion and healthy development among primary and secondary school students.
Methods:
Adopting a cluster random sampling method, data on primary and secondary students aged 7-15 years from nutrition and health surveillance of China NIPRCES in 2021 and 2023 were collected. The prevalence of unhealthy lifestyles among primary and secondary students such as physical inactivity, outdoor inactivity, excessive screen time, and sleep deprivation by gender, school section, urban/rural, and region were analyzed. The reporting rates of the above indicators among primary and secondary students were compared by Chi-square test.
Results:
In 2021 and 2023, the rates of moderate to vigorous physical inactivity among primary and secondary school students were 79.2% and 80.4%, the rates of outdoor inactivity were 42.8% and 49.3%, the rates of excessive video time were 2.6% and 2.9%, the rates of sleep deprivation were 32.9% and 22.6%, and the differences were statistically significant( χ 2=51.86,1 071.48,18.36,3 296.99, P <0.05). In 2023, the rate of outdoor inactivity for primary and secondary students increased by 6.5 percentage points compared with 2021, and the rate of sleep deprivation decreased by 10.3 percentage points compared with that in 2021. In 2021 and 2023, the reporting rates of moderate to vigorous physical inactivity, outdoor inactivity, and sleep deprivation among girls and junior high school students were higher than those among boys ( χ 2=174.41,180.11; 175.75, 85.46 ;92.22,151.35) and elementary school students ( χ 2=136.64,5.75; 40.55,4.71;162.80,3 291.61); the reporting rates of moderate to vigorous physical inactivity( χ 2=194.43,118.60) and sleep deprivation ( χ 2=969.66,983.72) among urban students were higher than those among rural students; the reporting rates of excessive video time for boys and junior high school students were higher than those for girls ( χ 2=103.62,84.85) and elementary school students ( χ 2=810.09,626.51)( P <0.05). From a regional distribution perspective, the reporting rates of moderato to vigorous physical inactivity, outdoor inactivity, and excessive video time among primary and seconday school students in the central and western regions were lower than those in the eastern region ( χ 2= 663.44,302.78; 356.97,82.10;50.89,81.83) ( P <0.05).
Conclusions
Unhealthy lifestyles remain prevalent among primary and secondary students in NIPRCES areas of China. These findings underscore the need to strengthen policy implementation for promoting healthy lifestyles among primary and secondary school students.
9.Elevated blood pressure and its association with dietary patterns among Chinese children and adolescents aged 7-17 years
Chinese Journal of School Health 2025;46(6):863-867
Objective:
To understand the prevalence of elevated blood pressure and its association with dietary patterns in children and adolescents in China, providing evidence for developing dietary intervention of hypertension in children and adolescents.
Methods:
Data were derived from the China Children s Nutrition and Health System Survey and Application Project(2019-2021). A stratified cluster random sampling method was used to include 7 933 participants from 28 survey sites in seven major regions of Northeast, North, Northwest, East, Central, South and Southwest China. Multivariate Logistic regression models were used to analyze associations between demographic characteristics, nutritional status and elevated blood pressure. Exploratory factor analysis identified dietary patterns, which were divided into three quartile groups (T3, T2, T1) based on factor scores (compliance for dietary pattern) from high to low, and multivariate Logistic regression model assessed the correlation between elevated blood pressure and dietary patterns.
Results:
The prevalence of elevated blood pressure was 15.4% among Chinese children aged 7-17 years. Significant differences were observed across nutritional status (reference: underweight; normal weight: OR =1.57; overweight: OR = 2.61 ; obesity: OR =3.85), urban/rural residence (reference: rural; urban: OR =0.86), and paternal education (reference: junior high school and below; bachelor degree or above: OR =0.68) ( P <0.05). The detection rates of high blood pressure in T3 group children and adolescents with four dietary patterns (staple food, animal based food, snacks, vegetables and fruits) were 15.7%, 14.6%, 16.8%, and 15.8%, respectively. After adjusting for residence, paternal education, and nutritional status, the "snack dietary pattern" (mainly candy, sugar sweetened beverages, and processed snacks) showed positive associations with elevated blood pressure in T2 ( OR =1.21) and T3 ( OR =1.19) tertiles ( P <0.05).
Conclusions
The snack dietary pattern is a related factor for elevated blood pressure in children and adolescents. Restricting unhealthy snack intake may promote cardiovascular health.
10.Correlation between Kayser-Fleischer ring grading and cognitive function in Wilson’s disease
Wei HE ; Yulong YANG ; Wenming YANG ; Yue YANG ; Chen HU ; Hui LI ; Peng HUANG
Journal of Clinical Hepatology 2025;41(6):1150-1155
ObjectiveTo investigate the correlation with cognitive function based on a new Kayser-Fleischer ring (K-F ring) grading method in Wilson’s disease (WD). MethodsA total of 136 WD patients who were hospitalized in Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, from April 2022 to October 2023 were enrolled. All subjects underwent slit lamp examination, and the grade of K-F ring was determined according to the shape and extent of copper deposition in the cornea, whether it formed a ring or not, and whether there was a sunflower-like cloudy change in the lens. The patients were instructed to complete UWDRS, MoCA, and MMSE scale assessments, and these indicators were compared between patients with different K-F ring grades. An analysis of variance was used for comparison of normally distributed continuous data between multiple groups, and the least significant difference t-test (homogeneity of variance) or the Dunnett’s T3 test (heterogeneity of variance) was used for further multiple comparisons; the Kruskal-Wallis H test was used for comparison of non-normally distributed continuous data between multiple groups; the chi-square test was used for comparison of categorical data between groups. The Spearman correlation analysis was used to investigate the correlation of K-F ring grade with UWDRS, MoCA, and MMSE scores. ResultsAmong the 136 patients with WD, there were 40 patients with grade 4 K-F ring, accounting for the highest proportion of 29.4%, and 14 patients with grade 0 K-F ring, accounting for the lowest proportion of 10.3%, and there were 22 patients with grade 1 K-F ring (16.2%), 19 with grade 2 K-F ring (14%), 25 with grade 3 K-F ring (18.4%), and 16 with grade 5 K-F ring (11.7%). According to the different grades of K-F ring, there was a significant increase in UWDRS score (F=22.61, P<0.001) and significant reductions in MoCA and MMSE scores (F=16.40 and 13.80, both P<0.001). The Spearman correlation analysis showed that K-F ring grade was positively correlated with UWDRS score (r=0.67, P<0.01) and was negatively correlated with MoCA and MMSE scores in WD patients (r=-0.59 and -0.57, both P<0.01). ConclusionThe new K-F ring grading method can determine disease severity in WD patients to a certain degree and partially reflect cognitive function and activities of daily living in such patients.


Result Analysis
Print
Save
E-mail