1.Effect of different blood transfusion threshold on the prognosis of elderly patients with anemia in intensive care unit
Feihuan HU ; Heng YANG ; Pushan ZHANG ; Jun LI ; Hanshen YE
Chinese Journal of Blood Transfusion 2025;38(6):782-787
Objective: To evaluate the clinical effect of blood transfusion treatment in elderly critically ill patients under different blood transfusion initiation thresholds. Methods: A total of 144 elderly critically ill patients aged >70 years who underwent red blood cell transfusion in the elderly intensive care unit (ICU) of our hospital from January 2021 to January 2023 were included. According to different blood transfusion initiation thresholds, the patients were divided into restrictive blood transfusion group (n=77, Hb<70 g/L before blood transfusion) and liberal blood transfusion group (n=67, Hb 70-100 g/L before blood transfusion). Acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) score, estimated mortality and general data collection were performed when the two groups of patients entered the ICU. Blood transfusion details of these patients in the ICU were collected and documented, including pre-transfusion Hb levels, volume and number of red blood cell transfusion, and post- transfusion Hb levels. Propensity score matching (PSM) was used to match the baseline data of the two groups of patients, and the clinical outcomes were compared and analyzed after matching. Results: After PSM matching, 52 pairs of patients were successfully matched. The matched restrictive and liberal transfusion groups showed comparable characterists, including age, APACHE Ⅱ score, the number of cases with APACHE Ⅱ score >20, estimated mortality, incidence of comorbidities and primary diseases (P>0.05). The number of red blood cell transfusions and transfusion volume (U) in the ICU of the two groups were 7.77±4.73 vs 12.19±10.41, 11.64±7.65 vs 19.14±16.14 (all P<0.05), and the Hb levels (g/L) before and after red blood cell transfusion in the ICU was 59.92±5.98 vs 77.44±8.60,77.88±17.21 vs 87.56±15.23 (all P<0.05). In terms of clinical outcomes, there was no significant difference between the two groups (all P>0.05): ICU length of stay (d) 39.56±36.80 vs 40.10±49.29, three-week mortality rate (%) 21.2 vs 21.2, in-hospital mortality rate (%) 46.2 vs 53.9, mortality rate in subgroup with APACHE Ⅱ score ≤ 20 (%) 11.5 vs 1.9, the incidence of severe infection (%) 78.8 vs 73.1, the incidence of heart failure (%) 57.7 vs 44.2, and the incidence of pulmonary edema (%) 26.9 vs 19.2. Conclusion: Elderly ICU patients can tolerate lower blood transfusion thresholds. Therefore, the restrictive transfusion strategy can reduce the total amount of blood transfusion, save valuable blood resources, and achieve the same blood transfusion effect as the liberal transfusion strategy.
2.Production of GTKO pigs and kidney xenotransplantation from pigs to rhesus macaques
Yan WANG ; Yue CHANG ; Chang YANG ; Taiyun WEI ; Xiaoying HUO ; Bowei CHEN ; Jiaoxiang WANG ; Heng ZHAO ; Jianxiong GUO ; Hongfang ZHAO ; Xiong ZHANG ; Feiyan ZHU ; Wenmin CHENG ; Hongye ZHAO ; Kaixiang XU ; Ameen Jamal MUHAMMAD ; Zhendi WANG ; Hongjiang WEI
Organ Transplantation 2025;16(4):526-537
Objective To explore the construction of α-1,3-galactosyltransferase (GGTA1) gene-knockout (GTKO) Diannan miniature pigs and the kidney xenotransplantation from pigs to rhesus macaques, and to assess the effectiveness of GTKO pigs. Methods The GTKO Diannan miniature pigs were constructed using the CRISPR/Cas9 gene-editing system and somatic cell cloning technology. The phenotype of GTKO pigs was verified through polymerase chain reaction, Sanger sequencing and immunofluorescence staining. Flow cytometry was used to detect antigen-antibody (IgM) binding and complement-dependent cytotoxicity. Kidney xenotransplantation was performed from GTKO pigs to rhesus macaques. The humoral immunity, cellular immunity, coagulation and physiological indicators of the recipient monkeys were monitored. The function and pathological changes of the transplanted kidneys were analyzed using ultrasonography, hematoxylin-eosin staining, immunohistochemical staining and immunofluorescence staining. Results Single-guide RNA (sgRNA) targeting exon 4 of the GGTA1 gene in Diannan miniature pigs was designed. The pGL3-GGTA1-sgRNA1-GFP vector was transfected into fetal fibroblasts of Diannan miniature pigs. After puromycin selection, two cell clones, C59# and C89#, were identified as GGTA1 gene-knockout clones. These clones were expanded to form cell lines, which were used as donor cells for somatic cell nuclear transfer. The reconstructed embryos were transferred into the oviducts of trihybrid surrogate sows, resulting in 13 fetal pigs. Among them, fetuses F04 and F11 exhibited biallelic mutations in the GGTA1 gene, and F04 had a normal karyotype. Using this GTKO fetal pig for recloning and transferring the reconstructed embryos into the oviducts of trihybrid surrogate sows, seven surviving piglets were obtained, all of which did not express α-Gal epitope. The binding of IgM from the serum of rhesus monkey 20# to GTKO pig PBMC was reduced, and the survival rate of GTKO pig PBMC in the complement-dependent cytotoxicity assay was higher than that of wild-type pig. GTKO pig kidneys were harvested and perfused until completely white. After the left kidney of the recipient monkey was removed, the pig kidney was heterotopically transplanted. Following vascular anastomosis and blood flow restoration, the pig kidney rapidly turned pink without hyperacute rejection (HAR). Urine appeared in the ureter 6 minutes later, indicating successful kidney transplantation. The right kidney of the recipient was then removed. Seven days after transplantation, the transplanted kidney had good blood flow, the recipient monkey's serum creatinine level was stable, and serum potassium and cystatin C levels were effectively controlled, although they increased 10 days after transplantation. Seven days after transplantation, the levels of white blood cells, lymphocytes, monocytes and eosinophils in the recipient monkey increased, while platelet count and fibrinogen levels decreased. The activated partial thromboplastin time, thrombin time and prothrombin time remained relatively stable but later showed an upward trend. The recipient monkey survived for 10 days. At autopsy, the transplanted kidney was found to be congested, swollen and necrotic, with a small amount of IgG deposition in the renal tissue, and a large amount of IgM, complement C3c and C4d deposition, as well as CD68+ macrophage infiltration. Conclusions The kidneys of GTKO Diannan miniature pigs may maintain normal renal function for a certain period in rhesus macaques and effectively overcome HAR, confirming the effectiveness of GTKO pigs for xenotransplantation.
3.Mahuang Lianqiao Chixiaodou Decoction and its active components inhibit alternative pathway complement activation in rat model of IgA nephropathy.
Ting SONG ; Guang-Yu SHENG ; Wei RUAN ; Ya-Heng ZHANG ; Xue-Jun YANG
China Journal of Chinese Materia Medica 2025;50(6):1626-1636
This study aims to investigate the mechanism of Mahuang Lianqiao Chixiaodou Decoction(MHLQ) and its main active components in treating immunoglobin A nephropathy(IgAN). The rat model of IgAN was established by a combination of measures including gavage of bovine serum albumin, subcutaneous injection of carbon tetrachloride, and tail vein injection of lipopolysaccharide. The modeled rats were randomized into model, low-, medium-, and high-dose(1.773, 3.545, and 7.090 g·kg~(-1), respectively) MHLQ, phillyrin(PHI, 0.020 g·kg~(-1)), pseudoephedrine(PSE, 0.020 g·kg~(-1)), and losartan potassium(LP, 9.003 mg·kg~(-1)) groups, and Wistar rats were used as the control. Rats were administrated with corresponding drugs by gavage, and those in the control and model groups received an equal volume of normal saline. All the groups were treated for 4 consecutive weeks. Urine, serum, liver, and kidney samples were collected from rats in each group at the end of drug administration. The 24 h urine protein and renal function were examined, and staining was performed to observe the pathological changes in the renal tissue. The immunofluorescence assay was employed to detect the expression of IgA and complement C3/C3b/C3c in the renal tissue. Electron microscopy was employed to observe the ultrastructure of the renal tissue. Enzyme-linked immunosorbent assay was performed to determine the expression of complement C3 and sublytic C5b-9 in the serum and renal tissue. Western blot was performed to determine the expression levels of hepatic and renal complement C3/C3b/C3c, C5/C5a, C5b-9, and complement factor B(CFB). Immunohistochemistry(IHC) was employed to measure the expression of complement C3 in the renal tissue. The results showed that compared with the control group, the model group had elevated levels of blood urea nitrogen and serum creatinine, proliferation of glomerular mesangial cells and extracellular matrix, and glomerular deposition of IgA immune complexes or electron-dense material. In addition, the model group showcased increased serum C3 levels and up-regulated expression of CFB, C3/C3b/C3c, C5/C5a, and C5b-9 in the renal tissue and C3/C3b/C3c and C5b-9 in the hepatic tissue. After treatment with MHLQ and its active components, all of the above indexes were reversed. In conclusion, MHLQ and its active components can improve the renal function and reduce the deposition of immune complexes and pathological damage in the renal tissue of the rat model of IgAN by inhibiting the alternative pathway complement activation.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Glomerulonephritis, IGA/genetics*
;
Rats
;
Male
;
Disease Models, Animal
;
Rats, Wistar
;
Complement Activation/drug effects*
;
Kidney/immunology*
;
Humans
4.Augmentation of PRDX1-DOK3 interaction alleviates rheumatoid arthritis progression by suppressing plasma cell differentiation.
Wenzhen DANG ; Xiaomin WANG ; Huaying LI ; Yixuan XU ; Xinyu LI ; Siqi HUANG ; Hongru TAO ; Xiao LI ; Yulin YANG ; Lijiang XUAN ; Weilie XIAO ; Dean GUO ; Hao ZHANG ; Qiong WU ; Jie ZHENG ; Xiaoyan SHEN ; Kaixian CHEN ; Heng XU ; Yuanyuan ZHANG ; Cheng LUO
Acta Pharmaceutica Sinica B 2025;15(8):3997-4013
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation and joint damage, accompanied by the accumulation of plasma cells, which contributes to its pathogenesis. Understanding the genetic alterations occurring during plasma cell differentiation in RA can deepen our comprehension of its pathogenesis and guide the development of targeted therapeutic interventions. Here, our study elucidates the intricate molecular mechanisms underlying plasma cell differentiation by demonstrating that PRDX1 interacts with DOK3 and modulates its degradation by the autophagy-lysosome pathway. This interaction results in the inhibition of plasma cell differentiation, thereby alleviating the progression of collagen-induced arthritis. Additionally, our investigation identifies Salvianolic acid B (SAB) as a potent small molecular glue-like compound that enhances the interaction between PRDX1 and DOK3, consequently impeding the progression of collagen-induced arthritis by inhibiting plasma cell differentiation. Collectively, these findings underscore the therapeutic potential of developing chemical stabilizers for the PRDX1-DOK3 complex in suppressing plasma cell differentiation for RA treatment and establish a theoretical basis for targeting PRDX1-protein interactions as specific therapeutic targets in various diseases.
5.RADICAL: a rationally designed ion channel activated by ligand for chemogenetics.
Heng ZHANG ; Zhiwei ZHENG ; Xiaoying CHEN ; Lizhen XU ; Chen GUO ; Jiawei WANG ; Yihui CUI ; Fan YANG
Protein & Cell 2025;16(2):136-142
6.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
7.Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling.
Yongxian LI ; Jinbo YUAN ; Wei DENG ; Haishan LI ; Yuewei LIN ; Jiamin YANG ; Kai CHEN ; Heng QIU ; Ziyi WANG ; Vincent KUEK ; Dongping WANG ; Zhen ZHANG ; Bin MAI ; Yang SHAO ; Pan KANG ; Qiuli QIN ; Jinglan LI ; Huizhi GUO ; Yanhuai MA ; Danqing GUO ; Guoye MO ; Yijing FANG ; Renxiang TAN ; Chenguang ZHAN ; Teng LIU ; Guoning GU ; Kai YUAN ; Yongchao TANG ; De LIANG ; Liangliang XU ; Jiake XU ; Shuncong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):90-101
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Animals
;
NFATC Transcription Factors/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Ovariectomy
;
Osteoclasts/metabolism*
;
Female
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
NF-kappa B/genetics*
;
Osteoporosis/genetics*
;
Signal Transduction/drug effects*
;
Bone Resorption/genetics*
;
Cell Differentiation/drug effects*
;
Humans
;
RANK Ligand/metabolism*
;
Mitogen-Activated Protein Kinases/genetics*
;
Transcription Factors
8.Downregulation of Serum PTEN Expression in Mercury-Exposed Population and PI3K/AKT Pathway-Induced Inflammation
Peng MEI ; Min En DING ; Yang Hao YIN ; Xue Xue DING ; Huan WANG ; Feng Jian WANG ; Lei HAN ; Dong Heng ZHANG ; Li Bao ZHU
Biomedical and Environmental Sciences 2024;37(4):354-366
Objective This study investigated the impact of occupational mercury(Hg)exposure on human gene transcription and expression,and its potential biological mechanisms. Methods Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation.Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells.PTEN gene expression was assessed using qRT-PCR,and Western blotting was used to measure PTEN,AKT,and PI3K protein levels.IL-6 expression was determined by ELISA. Results Combined findings from gene expression microarray analysis,bioinformatics,and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group.In the Hg-exposed cell model(25 and 10 μmol/L),a significant decrease in PTEN expression was observed,accompanied by a significant increase in PI3K,AKT,and IL-6 expression.Similarly,a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K,AKT,and IL-6 levels. Conclusion This is the first study to report that Hg exposure downregulates the PTEN gene,activates the PI3K/AKT regulatory pathway,and increases the expression of inflammatory factors,ultimately resulting in kidney inflammation.
9.A genetic variant in the immune-related gene ERAP1 affects colorectal cancer prognosis
Danyi ZOU ; Yimin CAI ; Meng JIN ; Ming ZHANG ; Yizhuo LIU ; Shuoni CHEN ; Shuhui YANG ; Heng ZHANG ; Xu ZHU ; Chaoqun HUANG ; Ying ZHU ; Xiaoping MIAO ; Yongchang WEI ; Xiaojun YANG ; Jianbo TIAN
Chinese Medical Journal 2024;137(4):431-440
Background::Findings on the association of genetic factors and colorectal cancer (CRC) survival are limited and inconsistent, and revealing the mechanism underlying their prognostic roles is of great importance. This study aimed to explore the relationship between functional genetic variations and the prognosis of CRC and further reveal the possible mechanism.Methods::We first systematically performed expression quantitative trait locus (eQTL) analysis using The Cancer Genome Atlas (TCGA) dataset. Then, the Kaplan-Meier analysis was used to filter out the survival-related eQTL target genes of CRC patients in two public datasets (TCGA and GSE39582 dataset from the Gene Expression Omnibus database). The seven most potentially functional eQTL single nucleotide polymorphisms (SNPs) associated with six survival-related eQTL target genes were genotyped in 907 Chinese CRC patients with clinical prognosis data. The regulatory mechanism of the survival-related SNP was further confirmed by functional experiments.Results::The rs71630754 regulating the expression of endoplasmic reticulum aminopeptidase 1 ( ERAP1) was significantly associated with the prognosis of CRC (additive model, hazard ratio [HR]: 1.43, 95% confidence interval [CI]: 1.08-1.88, P = 0.012). The results of dual-luciferase reporter assay and electrophoretic mobility shift assay showed that the A allele of the rs71630754 could increase the binding of transcription factor 3 (TCF3) and subsequently reduce the expression of ERAP1. The results of bioinformatic analysis showed that lower expression of ERAP1 could affect the tumor immune microenvironment and was significantly associated with severe survival outcomes. Conclusion::The rs71630754 could influence the prognosis of CRC patients by regulating the expression of the immune-related gene ERAP1. Trial Registration::No. NCT00454519 (https://clinicaltrials.gov/)
10.Design,synthesis and functional validation of peptide inhibitors based on TRPV1 ion channel agonist RhTx
Heng ZHANG ; Jiawei WANG ; Fan YANG
Journal of Zhejiang University. Medical sciences 2024;53(2):201-206
Objective:To design and synthesize peptide inhibitors targeting transient receptor potential vanilloid 1(TRPV1)ion channel,and to validate their function.Methods:Based on previous studies on the relation of molecular structure and function of red head toxin(RhTx),a series of peptides were rationally designed and synthesized,with positive charged amino acids linked to the N terminus of RhTx.These Nplus-RhTx peptides were functionally validated by patch-clamp recordings in live cells.Results:Among the 8 synthesized Nplus-RhTx peptides,four inhibited TRPV1 ion channel activated by capsaicin with IC50 of(188.3±4.7),(193.6±18.0),(282.8±11.9)and(299.5±6.4)μmol/L,respectively.Conclusion:It is feasible to develop TRPV1 peptide inhibitors by using rational design based on N terminal residues of RhTx.

Result Analysis
Print
Save
E-mail