1.Research on The Role of Dopamine in Regulating Sleep and Wakefulness Through Exercise
Li-Juan HOU ; Ya-Xuan GENG ; Ke LI ; Zhao-Yang HUANG ; Lan-Qun MAO
Progress in Biochemistry and Biophysics 2025;52(1):88-98
Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze the mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for ventral tegmental area DA neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to introduce the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
2.Expression of peroxiredoxin 4 in oral squamous cell carcinoma and its effects on cancer cell proliferation, migration, and invasion
GENG Hua ; LI Lei ; YANG Jie ; LIU Yunxia ; CHEN Xiaodong
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(4):278-288
Objective:
To investigate the expression of peroxiredoxin 4 (PRDX4) in oral squamous cell carcinoma (OSCC) and its effect on the proliferation, migration, and invasion of OSCC cells.
Methods:
The Cancer Genome Atlas(TCGA) database was used to analyze the expression of PRDX4 in OSCC. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to detect the mRNA and protein expression of PRDX4 in OSCC cell lines and normal oral mucosal epithelial cells. PRDX4 was knocked down in CAL-27 cells and divided into two groups: the si-PRDX4 group and si-NC group. SCC-9 cells overexpressing PRDX4 were divided into two groups: the PRDX4 overexpression group (transfected with pcDNA3.1-PRDX4 plasmid) and the vector group (the control group; transfected with pcDNA3.1-NC plasmid). A cell counting kit-8 (CCK-8) and plate colony formation assay were used to detect cell proliferation. Transwell assay and cell scratch test were used to detect cell invasion and migration ability. WB was used to detect the effects of knockdown or overexpression of PRDX4, p38MAPK agonist or inhibitor on the expression of p38MAPK-related signaling pathway proteins, and epithelial mesenchymal transition proteins in OSCC cells.
Results:
PRDX4 was highly expressed in OSCC tissues and cell lines. The results of qRT-PCR and WB showed that PRDX4 was highly expressed in OSCC cell lines compared with normal oral mucosal epithelial cells. The CCK-8 assay showed that the si-PRDX4 group had significantly lower OD values than the si-NC group at 24, 48, and 72 h (P<0.05). The PRDX4 overexpression group had a significantly higher OD value than the vector group at 24, 48, and 72 h (P<0.05). The plate colony formation assay showed that the si-PRDX4 group had a significantly lower number of colonies than the si-NC group (P<0.05). The number of colonies formed in the PRDX4 overexpression group was significantly higher than that in the vector group (P<0.05). The cell scratch test showed that the wound healing area of the si-PRDX4 group was less than that of the si-NC group (P<0.05). The scratch healing area of the PRDX4 overexpression group was significantly higher than that of the vector group (P<0.05). The Transwell invasion assay showed that the number of transmembrane cells in the si-PRDX4 group was lower than that in the si-NC group (P<0.05). The number of transmembrane cells in the PRDX4 overexpression group was significantly higher than that in the vector group (P<0.05). The WB results showed that knockdown and overexpression of PRDX4 could downregulate and upregulate the expression of the p38MAPK signaling pathway and epithelial-mesenchymal transition related proteins, respectively, and the addition of p38MAPK agonist and inhibitor could significantly reverse the expression of related proteins.
Conclusion
PRDX4 is highly expressed in OSCC. Knocking down the expression of PRDX4 in OSCC cells can downregulate the expression of p38 MAPK signal axis and EMT-related signal proteins, thereby inhibiting the proliferation, migration, invasion, and epithelial-mesenchymal transition of cells.
3.Etiological characteristics and molecular evolution of the first mpox case in Huai’an City of Jiangsu Province
Pengfei YANG ; Fang HE ; Qingli YAN ; Heyuan GENG ; Tong GAO ; Qiang GAO ; Chenglong XIONG ; Haiyan PENG
Chinese Journal of Schistosomiasis Control 2025;37(1):85-92
Objective To analyze the virus subtypes, molecular evolutional and molecular transmission network features of the first confirmed mpox case in Huai’an City, Jiangsu Province, so as to provide insights into understanding of the transmission and evolution dynamics of mpox virus and formulation of the mpox control strategy in the city. Methods Genomic DNA was extracted from swabs of the first confirmed mpox case’s skin lesions in Huai’an City, and the amplicon sequencing library was constructed using the hypersensitive mpox virus whole-genome capture kit. High-throughput sequencing was performed using the GridION X5 nanopore sequencer on the Nanopore sequencing platform, and single nucleotide polymorphism (SNP) analysis of mpox virus genome sequences was performed following sequence assembly. In addition, phylogenetic analysis, genetic genealogy and molecular traceability analysis were performed. Results The virus whole genome sequence of the first confirmed mpox case was successfully obtained by high-throughput sequencing, with a full length of 197 182 bp, and was named hMpxV/China/JS-HA01/2023, which belonged to the clade IIb (West African clade) lineage B.1.3. Compared with the mpox virus reference sequence MPXV-M5312_HM12_Rivers-001 (GenBank accession number: NC_063383), the genome sequence of the Huai’an virus isolate carried 86 SNPs, including 40 SNPs in the coding region as non-synonymous mutations and 73 SNPs as nucleotide mutations caused by APOBEC3 (APOBEC3). Of the 97 mpox virus gene sequences, 79 sequences were included in the molecular network (81.44%), and the threshold of the genetic distance accessed to the network was 0.35/105. There were two large molecular transmission clusters and one scattered cluster in the molecular transmission network of the mpox virus, andthehMpxV/China/JS-HA01/2023 sequence was located in the large cluster. The 97 gene sequences formed 92 haplotypes, including three shared haplotypes Hap_4, Hap_6 and Hap_38, and an exclusive haplotype Hap_1 of hMpxV/China/JS-HA01/2023 generated from mutation of the exclusive haplotype Hap_43, while the exclusive haplotype Hap_43 was generated from mutation of the shared haplotype Hap_38. Conclusions The whole genome sequence of the mpox virus isolated from the first confirmed mpox case in Huai’an City has been successfully obtained, and the molecular evolutionary and molecular transmission network characteristics of the virus have been preliminarily understood.
4.Treatment of Ulcerative Colitis with the Combined Method of Warming and Clearing
Journal of Traditional Chinese Medicine 2025;66(10):1069-1072
It is considered that the key pathogenesis of ulcerative colitis lies in spleen and kidney yang deficiency combined with damp-heat accumulation in the intestines. It is advocated to treat the disease by the combined application of warming and clearing methods. In clinical practice, treatment is differentiated according to the disease stage.During the active stage, the pathogenesis tends to involve damp-heat accumulation, and treatment should focus more on clearing heat while moderately warming yang; during the remission stage, the pathogenesis tends toward spleen and kidney yang deficiency, and treatment should focus more on warming yang while appropriately clearing heat. Once the condition stabilizes, a combined approach of warming and clearing is used to regulate the spleen and kidneys and to consolidate the therapeutic effect.
5.Effect of tritiated water on the immune system of zebrafish and mechanism analysis
Xiaofang GENG ; Chang LIU ; Yinyin YANG ; Yang ZHANG ; Le ZHAO ; Bingqing ZENG ; Chen WANG ; Pengyu LIN ; Yulong LIU
Chinese Journal of Radiological Health 2025;34(3):354-362
Objective To investigate the effect of tritiated water on the immune system of zebrafish and its potential molecular mechanism. Methods Zebrafish embryos (2.5 to 3 hours post-fertilization [hpf]) were exposed to 3.7 × 104 Bq/mL tritiated water (tritiated water group), and those exposed to E3 culture medium were used as the control group. The mortality rate, hatching rate, deformity rate, heart rate, body length, yolk sac area, neutrophil count in the tail, immune-related gene expression, and immune-related protein expression of zebrafish in the two groups were determined. Then transcriptome technology was used to further analyze the possible mechanism of tritiated water affecting the immune system of zebrafish. Results Compared with the control group, zebrafish at 72 hpf in the tritiated water group had no significant changes in the mortality rate, hatching rate, deformity rate, body length, and yolk sac area((t = 0.9045, 0.5000, 1.0000, 0.7238, 0.0337, P = 0.4169, 0.6433, 0.3739, 0.4785, 0.9735), but had significantly increased heart rate(t = 4.575,P = 0.002). At 4 days post-fertilization (dpf), the neutrophil count in the tail of zebrafish in the tritiated water group was significantly increased(t = 2.563,P = 0.0196), the mRNA expression of TNF-α was significantly decreased(t = 2.891, P = 0.045), the protein expression of nuclear factor-kappa B (NF-κB) was significantly increased(t = 3.848, P = 0.018), and the protein expression of NLRP3 was significantly decreased(t = 14.98, P = 0.001). At 7 dpf, the neutrophil count in the tail and the protein expression levels of NF-κB, NLRP3, and interleukin-1β were significantly decreased(t = 3.772, 7.048, 15.620, 4.423, P = 0.014, 0.002, 0.0001, 0.012). Transcriptome sequencing revealed that differentially expressed genes were mainly enriched in the “neutrophil activation” and “platelet activation pathways” at 4 dpf and in the “neutrophil apoptosis”, “ferroptosis”, and “necroptosis” pathways at 7 dpf. Conclusion Tritiated water exposure induces a temporally dynamic immune response in zebrafish, potentially affecting immune homeostasis by regulating neutrophil activation and apoptosis, as well as the expression of NF-κB and NLRP3.
6.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
7.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
8.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
9.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
10.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.


Result Analysis
Print
Save
E-mail