1.Blood management strategy for massive transfusion patients in frigid plateau region
Haiying WANG ; Jinjin ZHANG ; Lili CHEN ; Xiaoli SUN ; Cui WEI ; Yongli HUANG ; Yingchun ZHU ; Chong CHEN ; Yanchao XING
Chinese Journal of Blood Transfusion 2025;38(2):268-273
[Objective] To explore the strategy of blood management in patients with massive transfusion in the frigid plateau region. [Methods] The treatment process of a patient with liver rupture in the frigid plateau region was analyzed, and the blood management strategy of the frigid plateau region was discussed in combination with the difficulties of blood transfusion and literature review. [Results] The preoperative complete blood count (CBC) test results of the patient were as follows: RBC 3.14×1012/L, Hb 106 g/L, HCT 30.40%, PLT 115.00×109/L; coagulation function: PT 18.9 s, FiB 1.31 g/L, DD > 6 μg/mL, FDP 25.86 μg/mL; ultrasound examination and imaging manifestations suggested liver contusion and laceration / intraparenchymal hematoma, splenic contusion and laceration, and massive blood accumulation in the abdominal cavity; it was estimated that the patient's blood loss was ≥ 2 000 mL, and massive blood transfusion was required during the operation; red blood cell components were timely transfused during the operation, and the blood component transfusion was guided according to the patient's CBC and coagulation function test results, providing strong support and guarantee for the successful treatment of the patient. The patient recovered well after the operation, and the CBC test results were as follows: RBC 4.32×1012/L, Hb 144 g/L, HCT 39.50%, PLT 329.00×109/L; coagulation function: APTT 29.3 s, PT 12.1 s, FiB 2.728 g/L, DD>6 μg/mL, FDP 25.86 μg/mL. The patient was discharged after 20 days, and regular follow-up reexamination showed no abnormal results. [Conclusion] Individualized blood management strategy should comprehensively consider the patient’s clinical symptoms, the degree of hemoglobin decline, dynamic coagulation test results and existing treatment conditions. Efficient and reasonable patient blood management strategies can effectively improve the clinical outcomes of massive transfusion patients in the frigid plateau region.
2.Research Progress on Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Knee Osteoarthritis
Jin GONG ; Jinjin ZHANG ; Lili CHEN ; Hui WANG ; Yanchao XING
Medical Journal of Peking Union Medical College Hospital 2025;16(1):75-82
Knee osteoarthritis (KOA) is a prevalent degenerative joint disease characterized by synovial inflammation, cartilage loss. Often manifesting as joint pain and limited mobility, it severely affects the quality of life of patients. Traditional treatment methods such as pharmacological injections and surgical interventions primarily aim to alleviate symptoms but have limited effects on cartilage repair. Human umbilical cord mesenchymal stem cells (hUC-MSCs), due to their anti-inflammatory and chondrogenic capabilities, is considered a new hope for the treatment of KOA. This article synthesizes the latest research findings from both domestic and international sources to discuss the theoretical basis for the clinical application of hUC-MSCs in treating KOA, clinical study design, and efficacy evaluation. It also addresses the challenges in the clinical application of hUC-MSCs and explores future directions, in the hope of providing feasible theoretical support for the treatment of KOA with hUC-MSCs.
3.Clinical applications of platelet derivatives: opportunities and challenges
Chinese Journal of Blood Transfusion 2025;38(9):1143-1149
In recent years, growing interest has been directed toward the application of platelet derivatives in regenerative medicine, cell therapy and targeted drug delivery. This article analyzes the basis and classification of platelet derivatives, discusses their clinical applications, and addresses main challenges such as the quantification and standardization of preparation process— particularly when used as individualized biologics, as well as the uncertainty and lack of comparability across experimental results. Countermeasures and improvements are provided, suggesting that standardized and normative management may offer new opportunities for the clinical use of platelet derivatives.
4.Risk of Circulating Tumor Cells and Clinical Blood Transfusion
Haiying WANG ; Jinjin ZHANG ; Xiaoli SUN ; Yanchao XING
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1266-1274
Circulating tumor cells (CTCs) have the ability to sow tumors and can be found in the peripheral blood of patients with precancerous lesions and healthy people. However, CTCs are not currently screened in the donors blood. A large number of allogeneic blood transfusions occurred worldwide each year, and allogeneic blood transfusions expose recipients to the risk of transmission and affect tumors associated with donor CTCs. Although leukocyte filtration can not completely remove tumor cells in the blood, it can effectively reduce the number of white blood cells in the blood and reduce their proliferation ability. Blood irradiation can effectively destroy the DNA of CTCs in the blood, and inhibit the occurrence and metastasis of tumors caused by the infusion of allogeneic blood containing CTCs. Therefore, we should pay attention to the potential risk of CTCs on clinical transfusion, and strengthen the preclinical treatment of blood to avoid donor-related tumor infection in blood recipients due to clinical transfusion.
5.Early coagulation function changes of penetrating intestinal firearm injury of pigs in high-altitude environment
Jiu SUN ; Xue YANG ; Jinquan QU ; Xinyue YANG ; Caifu SHEN ; Jiajia LI ; Yanchao XING ; Jiangwei LIU
Chinese Journal of Trauma 2024;40(3):257-265
Objective:To explore the early coagulation function changes of penetrating intestinal firearm injury of pig in high-altitude environments.Methods:Twenty healthy long white piglets were selected and divided into the plain group and the high-altitude group using the random number table method, with 10 pigs in each group. Pigs in the plain group were placed in a plain environment at an altitude of 800 meters, while pigs in the high-altitude group were placed in an experimental chamber simulating an altitude of 6 000 meters for 48 hours. Both groups received pistol gunshot to have firearm penetrating wounds to the abdominal intestinal tract and then returned to the plain observation room. At 0, 2, 4, 8, 12 and 24 hours after injury, coagulation in the peripheral blood and fibrinolytic indexes [prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen (Fbg), D-dimer (D-D), and fibrinogen degradation product (FDP)], thromboelastogram (TEG) [reaction time (R), clotting time (K), clot formation rate (α), maximum amplitude (MA) and coagulation composite index (CI) ], platelet parameters [platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and platelet-large cell ratio (P-LCR)] in the two groups were detected separately.Results:The PT values at 0 and 2 hours after injury in the high-altitude group were significantly lower than those in the plain group, while they were significantly higher at 8, 12 and 24 hours than those in the plain group ( P<0.01); there was no significant difference at 4 hours between the two groups ( P>0.05). The APTT values at 0, 2 and 4 hours after injury in the high-altitude group were significantly lower than those in the plain group, while they were significantly higher at 8, 12 and 24 hours after injury than those in the plain group ( P<0.01). The TT values at 0, 2 and 4 hours after the injury in the high-altitude group were significantly lower than those in the plain group, while they were significantly higher at 12 and 24 hours after injury than those in the plain group ( P<0.01); there was no significant difference at 8 hours after injury between the two groups ( P>0.05). The Fbg, D-D and FDP values at 0, 2, 4, 8, 12 and 24 hours after injury were higher in the high-altitude group than those in the plain group ( P<0.01). The R values at 0, 2 and 4 hours after injury in the high-altitude group were significantly lower than those in the plain group, while they were significantly higher at 8, 12 and 24 hours after injury than those in the plain group ( P<0.01). The K values at 0, 2, 4 and 8 hours after injury in the high-altitude group were significantly lower than those in the plain group, while they were significantly higher at 12 and 24 hours after injury than those in the plain group ( P<0.05 or 0.01). The α angles at 0, 2 and 4 hours after injury in the high-altitude group were significantly higher than those in the plain group, while they were significantly lower at 8, 12 and 24 hours after injury than those in the plain group ( P<0.01). The MA values at 0, 2 and 4 hours after the injury in the high-altitude group were significantly higher than those in the plain group, while they were significantly lower at 8, 12 and 24 hours after injury than those in the plain group ( P<0.01). The CI values at 0, 2 and 4 hours after injury in the high-altitude group were significantly higher than those in the plain group, while they were significantly lower at 8, 12 and 24 hours after injury than those in the plain group ( P<0.01). The PLT values at 0, 2, 4 and 8 hours after injury in the high-altitude group were significantly higher than those in the plain group, while they were significantly lower at 12 and 24 hours after injury than those in the plain group ( P<0.05 or 0.01). The MPV values at 0, 2, 4, 8, 12 and 24 hours after injury in the high-altitude group were significantly higher than those in the plain group ( P<0.01). The PDW values at 2, 4, 8, 12 and 24 hours after injury in the high-altitude group were significantly higher than those in the plain group ( P<0.05 or 0.01), while there was no significant difference in PDW at 0 hour after injury between the two groups ( P>0.05). The P-LCR values at 0, 2, 4, 8, 12 and 24 hours after injury in the high-altitude group were all significantly higher than those in the plain group ( P<0.01). Conclusion:Compared with the plain environments, pig intestinal firearm penetrating injury in the high-altitude environments is more prone to early hypercoagulable state accompanied by mild hyperfibrinolysis, and faster to reach a hypocoagulable state accompanied by obvious hyperfibrinolysis.
6.Plateau Refractory Wounds Treated with Platelet Lysate Gel: A Case Report
Qin ZHAO ; Haiying WANG ; Hui WANG ; Jinjin ZHANG ; Yanchao XING
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1408-1412
Plateau refractory wounds are affected by adverse conditions such as hypoxia, strong ultraviolet rays, and frigid, which can cause serious cell function damage, hinder re-epithelialization, and delay or even stop the healing of wounds. Conventional debridement and drainage, functional dressings and other traditional treatments have poor efficacy on this type of wound. Not only do patients have to endure long hospital stays, but they may also suffer from other complications due to long-term non-healing of wounds. In this paper, we report a patient with a plateau refractory wound that had not healed for 2 months. After two applications of platelet lysate gel treatment, the wound healed completely. This treatment method provides a new treatment approach for patients with plateau refractory wounds, which is worthy of clinical reference.
7.In Vitro Production of Red Blood Cells: Progress and Challenge
Hui WANG ; Jinjin ZHANG ; Lili CHEN ; Yanchao XING
Medical Journal of Peking Union Medical College Hospital 2024;15(1):166-171
Although blood protection technologies such as autologous blood transfusion can alleviate to some extent the short supply of clinical blood, red blood cells are still in great demand as the main blood component. This problem can be solved by the safe production of red blood cells in vitro. At present, mature erythrocytes can be differentiated from embryonic stem cells, human induced pluripotent stem cells, umbilical cord blood, peripheral blood, and immortalized erythroid progenitor cell lines. This article reviews the sources and applications of red blood cells produced in vitro, and analyzes the current challenges, in order to provide new insights for blood transfusion therapy.
8.Plateau Refractory Wounds Treated with Platelet Lysate Gel: A Case Report
Qin ZHAO ; Haiying WANG ; Hui WANG ; Jinjin ZHANG ; Yanchao XING
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1408-1412
Plateau refractory wounds are affected by adverse conditions such as hypoxia, strong ultraviolet rays, and frigid, which can cause serious cell function damage, hinder re-epithelialization, and delay or even stop the healing of wounds. Conventional debridement and drainage, functional dressings and other traditional treatments have poor efficacy on this type of wound. Not only do patients have to endure long hospital stays, but they may also suffer from other complications due to long-term non-healing of wounds. In this paper, we report a patient with a plateau refractory wound that had not healed for 2 months. After two applications of platelet lysate gel treatment, the wound healed completely. This treatment method provides a new treatment approach for patients with plateau refractory wounds, which is worthy of clinical reference.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Safety of RhD alloimmunization
Chenyue LI ; Sitian CHEN ; Rui HE ; Ning SONG ; Li TIAN ; Jinjin ZHANG ; Yongli HUANG ; Yanchao XING ; Zhong LIU
Chinese Journal of Blood Transfusion 2021;34(5):489-493
【Objective】 To explore the safety of RhD-positive red blood cells (RBCs) immunization schedules in RhD-negative volunteers, so as to facilitate the development of domestic anti-D immunoglobulin. 【Methods】 From January 2018 to April 2020, 23 RhD negative volunteers with informed consent were enrolled and divided into initial immunization group and booster immunization group. The initial immunization included first immunization, second immunization and third immunization. Four groups, i. e. 3 cases of 20 mL, 8 of 30 mL, 6 of 40 mL, and 6 of 50 mL, were involved in initial immunization. After the initial immunization response, booster immunizations were performed every 3 months. According to the anti-D titer before each immunization, the booster immunization doses were set to 0.5, 1 and 2 mL. Whole blood samples of 5mL/ person (time) were collected 24 h and 1 week after each infusion, and the blood routine, liver, kidney and blood coagulation function and anti-D titer were detected. The differences of detection (index) values at 24 h and 1 week after the first immunization and booster immunization in each (dose) group were compared. 【Results】 No statistically significant differences were observed in hemolysis index values (all within the range of medical reference values) 24 h or 1 week after initial immunization among RhD positive RBCs of 20, 30, 40 and 50mL(P>0.05). The differences between the hemolysis index values and the basic values before the immune response (all within the range of medical reference values) after 0.5 or 1 mL booster immunizations were also not statistically different (P>0.05). However, the differences (μmol/L)between total bilirubin levels and the basic values before the immune response (1.55±1.87, 6.29±2.66) were significantly different after 2 mL booster immunization (P<0.05). 【Conclusion】 No risks affecting the safety of RhD negative volunteers was found in the immunization schedule proposed in this study.

Result Analysis
Print
Save
E-mail