1.Impact of prenatal triclosan exposure on ADHD-like symptoms in school-aged children
Jingjing LI ; Xiaomeng CHENG ; Yan ZHANG ; Luanluan LI ; Xiaodan YU ; Ying TIAN ; Yu GAO
Journal of Environmental and Occupational Medicine 2025;42(6):645-651
Background Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder in children, often diagnosed during school age. The etiology of ADHD remains unclear; however, existing studies suggest that environmental factors, such as exposure to triclosan (TCS), may be associated with the occurrence of ADHD-like symptoms in offspring. Nevertheless, relevant research in China remains limited. Objective To investigate the impact of early pregnancy TCS exposure on ADHD-like symptoms in 7-year-old children. Methods This study was based on the Shanghai Birth Cohort (SBC) and included 662 mother-child pairs. TCS concentrations in early pregnancy urine samples were measured using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Demographic information was collected via questionnaires and medical record abstraction. ADHD-like symptoms in 7-year-old children were first assessed using the Strengths and Difficulties Questionnaire (SDQ). Further differentiation of ADHD-like symptom subtypes (inattentive and hyperactive/impulsive) was conducted using the SNAP-IV, a clinically validated ADHD screening tool. Negative binomial regression models were applied to evaluate the associations between prenatal TCS exposure and hyperactive behavior (SDQ assessment) as well as ADHD-like symptom subtypes (SNAP-IV assessment) in 7-year-old children. Results The positive rate of TCS in early pregnancy urine samples was 91.39%, with median concentrations of 0.69 μg·L−1 and 0.63 μg·g−1 before and after the creatinine adjustment, respectively. The modeling results indicated that prenatal TCS exposure was associated with an increased risk of hyperactive symptoms (SDQ assessment) in 7-year-old children (RR=1.04, 95%CI: 1.02, 1.06); the stratified analyses by children sex revealed similar effects for both boys (RR=1.04, 95%CI: 1.02, 1.07) and girls (RR=1.04, 95%CI: 1.01, 1.07). Further analysis of ADHD-like symptom subtypes showed that prenatal TCS exposure increased the risk of inattentive symptoms (RR=1.03, 95%CI: 1.00, 1.05); the sex-stratified analyses indicated associations between TCS exposure and inattentive symptoms (RR=1.03, 95%CI: 1.00, 1.07) as well as hyperactive/impulsive symptoms (RR=1.04, 95%CI: 1.01, 1.08) in girls. Conclusion Prenatal TCS exposure is associated with an increased risk of ADHD-like symptoms in 7-year-old children, primarily contributing to the risk of the inattention subtype. The impact is more pronounced in girls.
2.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
3.Differentiation and Treatment of Pediatric Allergic Rhinitis Based on the Theory of "Spleen Fuctions as Wei Qi"
Haoyu DU ; Yongbin YAN ; Ying DING ; Wenbo LIU ; Yudi LI
Journal of Traditional Chinese Medicine 2025;66(15):1610-1613
Based on the theory of "spleen functions as wei qi", this paper believes that the disease mechanism of allergic rhinitis (AR) in children is the nasal dysfunction caused by the loss of spleen's wei qi. The root cause of AR is the failure of splenic transportation as well as its inability to properly distribute nutrients. The inducement of AR is the invasion of pathogenic qi coupled with insecurity of the wei exterior. The key to AR recurrence lies in the deficiency of healthy qi and lingering of pathogenic qi, with pathogenic qi lodging inside the body. The treatment should adhere to the principle of helping the spleen restore wei qi. During the acute phase, the treatment should dispel wind, conso-lidate the wei qi, and relieve stuffy orifices, and the modified Qufeng Tongqiao Decoction (祛风通窍汤) is used. During the remission phase, the treatment should fortify the spleen, raise the clear, and harmonize the wei qi, and the modified Yuhan Decoction (御寒汤) is applied. During the recovery phase, the treatment should reinforce the healthy qi, consolidate the constitution, and strengthen the wei qi, and the modified Huangqi Jianzhong Decoction (黄芪建中汤) is employed.
4.Neonatal alloimmune thrombocytopenia complicated with piperacillin drug antibody: a case report
Zifan MENG ; Shaoqiang ZHANG ; Qiang JU ; Ying LI ; Songxia YAN ; Haiyan WANG
Chinese Journal of Blood Transfusion 2025;38(7):969-974
Objective: To investigate the clinical symptoms, laboratory tests, and treatment strategies of a case of fetal/neonatal alloimmune thrombocytopenia (FNAIT) complicated with piperacillin drug antibody. Methods: The platelet antibodies in the mother were screened and identified by ELISA. The HLA antigens of the newborn were genotyped through PCR-SSO, while the specificity of HLA antibodies in the mother was determined using a Single Antigen kit. The drug antibody was detected by a piperacillin kit. Results: Maternal antibodies against paternally-derived platelet antigens were detected. The HLA genotypes of the newborn were identified as HLA A
33∶03 and HLA B
58∶01. The mother exhibited strong positive antibodies against the specific platelet antigens of the newborn, namely anti-HLA-A33 and anti-HLA-B58 antibodies. The piperacillin antibody was detected in the newborn. Following treatment of continuous intravenous immunoglobulin (IVIG), platelet transfusions, red blood cell transfusions and discontinuation of piperacillin treatment, the platelet count and hemoglobin levels increased in the newborn. Conclusion: The newborn in this case was diagnosed with FNAIT complicated by the presence of anti-HLA-A33 and anti-HLA-B58 antibodies, as well as drug-induced hemolytic anemia caused by piperacillin drug antibody. The condition is more complicated under the influence of dual immune antibodies. Laboratory detection techniques such as platelet antibody and drug antibody tests can assist in early clinical diagnosis. At the same time, more active drug and blood transfusion treatments should be given in clinical practice to improve the prognosis.
5.Neonatal alloimmune thrombocytopenia complicated with piperacillin drug antibody: a case report
Zifan MENG ; Shaoqiang ZHANG ; Qiang JU ; Ying LI ; Songxia YAN ; Haiyan WANG
Chinese Journal of Blood Transfusion 2025;38(7):969-974
Objective: To investigate the clinical symptoms, laboratory tests, and treatment strategies of a case of fetal/neonatal alloimmune thrombocytopenia (FNAIT) complicated with piperacillin drug antibody. Methods: The platelet antibodies in the mother were screened and identified by ELISA. The HLA antigens of the newborn were genotyped through PCR-SSO, while the specificity of HLA antibodies in the mother was determined using a Single Antigen kit. The drug antibody was detected by a piperacillin kit. Results: Maternal antibodies against paternally-derived platelet antigens were detected. The HLA genotypes of the newborn were identified as HLA A
33∶03 and HLA B
58∶01. The mother exhibited strong positive antibodies against the specific platelet antigens of the newborn, namely anti-HLA-A33 and anti-HLA-B58 antibodies. The piperacillin antibody was detected in the newborn. Following treatment of continuous intravenous immunoglobulin (IVIG), platelet transfusions, red blood cell transfusions and discontinuation of piperacillin treatment, the platelet count and hemoglobin levels increased in the newborn. Conclusion: The newborn in this case was diagnosed with FNAIT complicated by the presence of anti-HLA-A33 and anti-HLA-B58 antibodies, as well as drug-induced hemolytic anemia caused by piperacillin drug antibody. The condition is more complicated under the influence of dual immune antibodies. Laboratory detection techniques such as platelet antibody and drug antibody tests can assist in early clinical diagnosis. At the same time, more active drug and blood transfusion treatments should be given in clinical practice to improve the prognosis.
6.THBS4 in Disease: Mechanisms, Biomarkers, and Therapeutic Opportunities
De-Ying HUANG ; Yan-Hong LI ; Xiu-Feng BAI ; Yi LIU
Progress in Biochemistry and Biophysics 2025;52(9):2217-2232
Thrombospondin 4 (THBS4; TSP4), a crucial component of the extracellular matrix (ECM), serves as an important regulator of tissue homeostasis and various pathophysiological processes. As a member of the evolutionarily conserved thrombospondin family, THBS4 is a multidomain adhesive glycoprotein characterized by six distinct structural domains that mediate its diverse biological functions. Through dynamic interactions with various ECM components, THBS4 plays pivotal roles in cell adhesion, proliferation, inflammation regulation, and tissue remodeling, establishing it as a key modulator of microenvironmental organization. The transcription and translation of THBS4 gene, as well as the activity of the THBS4 protein, are tightly regulated by multiple signaling pathways and extracellular cues. Positive regulators of THBS4 include transforming growth factor-β (TGF-β), interferon-γ (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), bone morphogenetic proteins (BMP12/13), and other regulatory factors (such as B4GALNT1, ITGA2/ITGB1, PDGFRβ, etc.), which upregulate THBS4 at the mRNA and/or protein level. Conversely, oxidized low-density lipoprotein (OXLDL) acts as a potent negative regulator of THBS4. This intricate regulatory network ensures precise spatial and temporal control of THBS4 expression in response to diverse physiological and pathological stimuli. Functionally, THBS4 acts as a critical signaling hub, influencing multiple downstream pathways essential for cellular behavior and tissue homeostasis. The best-characterized pathways include: (1) the PI3K/AKT/mTOR axis, which THBS4 modulates through both direct and indirect interactions with integrins and growth factor receptors; (2) Wnt/β-catenin signaling, where THBS4 functions as either an activator or inhibitor depending on the cellular context; (3) the suppression of DBET/TRIM69, contributing to its diverse regulatory roles. These signaling connections position THBS4 as a master regulator of cellular responses to microenvironmental changes. Substantial evidence links aberrant THBS4 expression to a range of pathological conditions, including neoplastic diseases, cardiovascular disorders, fibrotic conditions, neurodegenerative diseases, musculoskeletal disorders, and atopic dermatitis. In cancer biology, THBS4 exhibits context-dependent roles, functioning either as a tumor suppressor or promoter depending on the tumor type and microenvironment. In the cardiovascular system, THBS4 contributes to both adaptive remodeling and maladaptive fibrotic responses. Its involvement in fibrotic diseases arises from its ability to regulate ECM deposition and turnover. The diagnostic and therapeutic potential of THBS4 is particularly promising in oncology and cardiovascular medicine. As a biomarker, THBS4 expression patterns correlate significantly with disease progression and patient outcomes. Therapeutically, targeting THBS4-mediated pathways offers novel opportunities for precision medicine approaches, including anti-fibrotic therapies, modulation of the tumor microenvironment, and enhancement of tissue repair. This comprehensive review systematically explores three key aspects of THBS4 research(1) the fundamental biological functions of THBS4 in ECM organization; (2) its mechanistic involvement in various disease pathologies; (3) its emerging potential as both a diagnostic biomarker and therapeutic target. By integrating recent insights from molecular studies, animal models, and clinical investigations, this review provides a framework for understanding the multifaceted roles of THBS4 in health and disease. The synthesis of current knowledge highlights critical research gaps and future directions for exploring THBS4-targeted interventions across multiple disease contexts. Given its unique position at the intersection of ECM biology and cellular signaling, THBS4 represents a promising frontier for the development of novel diagnostic tools and therapeutic strategies in precision medicine.
7.Effect of sorafenib and donafenib on the pharmacokinetics of ertugliflozin in rats
Yanru DENG ; Gexi CAO ; Bin YAN ; Ying LI ; Zhanjun DONG
Journal of Clinical Hepatology 2025;41(1):92-98
ObjectiveTo investigate the effect of sorafenib and donafenib on the pharmacokinetics of ertugliflozin in rats, and to provide a theoretical basis for drug combination in clinical practice. MethodsA total of 24 male Sprague-Dawley rats were randomly divided into groups A, B, C, and D, with 6 rats in each group. The rats in groups A and B were given sorafenib control solvent and sorafenib (100 mg/kg), respectively, by gavage for 7 consecutive days, followed by ertugliflozin (1.5 mg/kg) by gavage on day 7. Blood samples were collected from the angular vein plexus at different time points, and ultra-performance liquid chromatography-tandem mass spectrometry was used to determine the mass concentration of ertugliflozin and plot the plasma concentration-time curves, while the non-compartment model in DAS 2.1.1 software was used to calculate related pharmacokinetic parameters. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups. ResultsCompared with group A, group B had significant increases in the AUC0-t and AUC0-∞ of the plasma concentration-time curve of ertugliflozin (both P<0.05), significant prolongation of t1/2, MRT0-t, and MRT0-∞ (all P<0.05), and a significant reduction in CLZ/F (P<0.05). Compared with group C, group D had significant increases in the AUC0-t and AUC0-∞ of ertugliflozin (both P<0.05), significant prolongation of Tmax, t1/2, MRT0-t, and MRT0-∞ (all P<0.01), and significant reductions in VZ/F and CLZ/F (both P<0.05). ConclusionBoth sorafenib and donafenib can affect the pharmacokinetics of ertugliflozin in rats and significantly increase the plasma exposure of ertugliflozin. The efficacy and adverse drug reactions of ertugliflozin should be closely monitored during combined use in clinical practice and the dose should be adjusted when necessary to avoid the potential risk of drug interaction.
8.Processing History and Modern Research of Jianghuanglian: A Review
Ying LI ; Yun WANG ; Zhe JIA ; Lin YAN ; Min JIN ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):275-282
Jianghuanglian is one of the representative processed products of Coptidis Rhizoma for treating cold syndrome with drugs of heat nature, and ginger is used to restrict the bitter cold of Coptidis Rhizoma, which can be traced back to Bojifang, and it is suitable for stagnation of damp-heat in middle-jiao, cold-heat mutual knots and other symptoms. Jianghuanglian retains the alkaloids, phenylpropanoids and flavonoids of Coptidis Rhizoma, and also introduces gingerol components such as 6-gingerol in ginger, which has pharmacological activities such as anti-inflammatory, antibacterial, anti-tumor, and improving gastrointestinal function. The 2020 edition of Chinese Pharmacopoeia and many local processing specifications have included the traditional processing process and quality standards of Jianghuanglian, but the specific process parameters and quality standards are incomplete, which limits the production and clinical application of this processed product. By summarizing the processing history, process research, quality evaluation, pharmacodynamic and medicinal property changes and application of Jianghuanglian in the past 20 years, there are differences in the processing methods and standards in various provinces and cities, which are mainly reflected in the preparation method, dosage, processing process and quantitative standards of ginger juice. In addition, there are also certain differences in the changes of the main components of Jianghuanglian prepared from ginger or dried ginger, as well as their efficacy and medicinal properties. The research on the processing process of Jianghuanglian plays an important role in improving its quality standards, and this review can provide a reference for improving the quality evaluation system of Jianghuanglian.
9.Effects and mechanism of paeoniflorin on oxidative stress of ulcerative colitis mice
Xin DAI ; Ying WANG ; Xinyue REN ; Dingxing FAN ; Xianzhe LI ; Jiaxuan FENG ; Shilei LOU ; Hui YAN ; Cong SUN
China Pharmacy 2025;36(4):427-433
OBJECTIVE To investigate the effects and potential mechanism of paeoniflorin on oxidative stress of ulcerative colitis (UC) mice based on adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. METHODS Male BALB/c mice were randomly divided into control group, model group, inhibitor group (AMPK inhibitor Compound C 20 mg/kg), paeoniflorin low-, medium- and high-dose groups (paeoniflorin 12.5, 25, 50 mg/kg), high- dose of paeoniflorin+inhibitor group (paeoniflorin 50 mg/kg+Compound C 20 mg/kg), with 8 mice in each group. Except for the control group, mice in all other groups were given 4% dextran sulfate sodium solution for 5 days to establish the UC model. Subsequently, mice in each drug group were given the corresponding drug solution intragastrically or intraperitoneally, once a day, for 7 consecutive days. The changes in body weight of mice were recorded during the experiment. Twenty-four hours after the last administration, colon length, malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in colon tissues were measured; histopathological morphology of colon tissues, tight junctions between intestinal epithelial cells, and histopathological scoring were all observed and evaluated; the mRNA expressions of AMPK and Nrf2, as well as the protein expressions of heme oxygenase-1(HO-1), occludin and claudin-1, were all determined in colon tissue. RESULTS Compared with model group, paeoniflorin groups exhibited recovery from pathological changes such as inflammatory cell infiltration and crypt damage in the colon tissue, as well as improved tight junction damage between intestinal epithelial cells. Additionally, significant increases or upregulations were observed in body weight, colon length, activities of SOD and GSH-Px, phosphorylation level of AMPK, and protein expression of Nrf2, HO-1, occludin, claudin-1, and mRNA expressions of AMPK and Nrf2; concurrently, MDA content and histopathological scores were significantly reduced (P< 0.05 or P<0.01). In contrast, the inhibitor group showed comparable (P>0.05) or worse (P<0.05 or P<0.01) indicators compared to the model group. Conversely, the addition of AMPK inhibitor could significantly reverse the improvement of high- dose paconiflorin (P<0.01). CONCLUSIONS Paeoniflorin can repair intestinal epithelial cell damage in mice, improve tight junctions between epithelial cells, upregulate the expression of related proteins, and promote the expression and secretion of antioxidant-promoting molecules, thereby ameliorating UC; its mechanism may be associated with activating AMPK/Nrf2 antioxidant pathway.
10.Ameliorating effects of tetrahydrocurcumin and its nano-preparations on lipopolysaccharide-induced depression in mice
Hui Tan ; Yuanping Li ; Jingyuan Meng ; Tengteng Ma ; Yan Yang ; Zhengmao Yang ; Jiaqing Ma ; Jianping Xie ; Ying Guo
Acta Universitatis Medicinalis Anhui 2025;60(1):79-86
Objective :
To investigate the antidepressant effects and the underlying mechanisms of tetrahydrocurcumin(THC) and its nanoparticle formulation(THCN).
Methods :
Forty-six male ICR mice were randomly divided into Con group, LPS group, THC group, THCN group and SER group. A mouse depression model was established by intraperitoneal administration of LPS. The anxiety and depression-like behaviors of mice were evaluated by open field test(OFT) and forced swimming test(FST). Myelin staining was applied to assess the extent of demyelination in the prefrontal cortex of the mice. The prefrontal cortex and hippocampus were further examined for the expression levels of glial fibrillary acidic protein(GFAP) and Toll-like receptor 4(TLR4) through quantitative immunofluorescence assays.
Results :
Compared with the Con group, the LPS group showed increased anxiety-like and depressive-like behaviors in both the long-term and short-term experiments(P<0.05); the degree of demyelination increased in the LPS group of the long-term experiment(P<0.01); the expression of GFAP was reduced in the LPS group of the short-term experiment(P<0.01), while the expression of TLR4 increased(P<0.05); the expression of TLR4 decreased in the THC group(P<0.01); the expression of GFAP in the prefrontal cortex of the THCN group was reduced(P<0.01), while the expression of TLR4 increased(P<0.05). Compared with the LPS group, the THC group showed reduced depressive-like behaviors in the long-term experiment(P<0.05), while the anxiety-like and depressive-like behaviors of the THCN group and the SER group were reduced(P<0.05), and the anxiety-like and depressive-like behaviors of the THC group and the THCN group were reduced in the short-term experiment(P<0.05); the degree of demyelination was reduced in the THC group, THCN group and SER group in the long-term experiment(P<0.05); the expression of GFAP increased in the THC group of the short-term experiment(P<0.05), while the expression of TLR4 was reduced(P<0.05), and the expression of GFAP increased in the THCN group(P<0.05). Compared with the THC group, the THCN group and the SER group showed reduced anxiety-like behaviors in the long-term experiment(P<0.05); the expression of GFAP in the prefrontal cortex of the THCN group was reduced in the short-term experiment(P<0.05), while the expression of TLR4 in the hippocampal DG area increased in the short-term experiment(P<0.01).
Conclusion
Tetrahydrocurcumin and its nanoparticle formulation both exert significant ameliorative effects on depression-like behaviors and demyelination in mice induced by lipopolysaccharide. The antidepressant mechanism of THC appears to be mediated through the down-regulation of TLR4 and the up-regulation of GFAP. The mechanism underlying the antidepressant action of THCN seems predominantly focused on the enhancement of GFAP expression.


Result Analysis
Print
Save
E-mail