1.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
4.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
6. Mechanism of ellagic acid improving cognitive dysfunction in APP/PS double transgenic mice based on PI3K/AKT/GSK-3β signaling pathway
Li-Li ZHONG ; Xin LU ; Ying YU ; Qin-Yan ZHAO ; Jing ZHANG ; Tong-Hui LIU ; Xue-Yan NI ; Li-Li ZHONG ; Yan-Ling CHE ; Dan WU ; Hong LIU
Chinese Pharmacological Bulletin 2024;40(1):90-98
Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg
7.Efficacy and safety of switching to flumatinib in patients with chronic myeloid leukemia who have not achieved optimal response or are intolerant to TKI treatment
Songfan YANG ; Qin WEN ; Ying ZHANG ; Jinglong LYU ; Hua'e SHU ; Hongju YAN ; Cheng ZHANG ; Jin WEI ; Xi ZHANG
Journal of Army Medical University 2024;46(4):340-346
Objective To observe the efficacy and safety of flumatinib conversion in chronic myelogenous leukemia-chronicphase(CML-CP)patients with suboptimal TKI response or intolerance.Methods Patients who did not have the best response or intolerance to first-line imatinib,dasatinib,and nilotinib and switched to flumatinib(600 mg/d)from February 2020 to August 2022 were collected from 5 hospitals from Chongqing and affiliated hospitals of North Sichuan Medical College.The efficacy and safety of flumatinib were observed.The optimal response rate,major molecular response(MMR),cumulative complete cytogenetic response(CCyR)rate,cumulative MMR rate,cumulative deep molecular response(DMR),progression-free survival(PFS),event-free survival(EFS)and adverse reactions in 3,6 and 12 months after treatment were observed and analyzed.Results A total of 100 patients with CML-CP were enrolled,with a median follow-up of 18(3~36)months.The optimal response rate was 92.6%(88/95),94.4%(85/90)and 92.9%(79/85)respectively,at 3,6 and 12 months after treatment.Till August 20,2023,the cumulative CCyR and MMR rate was 98.0%(98/100)and 81.9%(77/94),respectively,the median time to reach CCyR and MMR was 3 months,and cumulative DMR rate was 51.0%(51/100).PFS rate was 100.0%(100/100)and 1-year EFS rate was 85.6%(75/90).The most common non-hematologic adverse reactions of flumatinib were diarrhea and abdominal pain(7.0%),followed by renal dysfunction(6.0%)and musculoskeletal pain(2.0%).The main hematologic adverse reactions were thrombocytopenia(12.0%),anemia(6.0%)and leukopenia(2.0%).Conclusion Flumatinib has better MMR and DMR and is well tolerated in CML-CP patients with TKI resistance or intolerance.
8.Construction and clinical practice of vector management strategy for preventing ventilator-associated pneumonia by blocking etiological characteristics
Xinhua XIA ; Ying WANG ; Pengbo YAN ; Yanling SUN ; Meimei SI ; Lie QIN ; Yuxia WANG ; Yanan LI ; Ling CHEN ; Zijun ZHANG
Chinese Journal of Practical Nursing 2024;40(4):283-288
Objective:To establish an environmental management strategy for the prevention of ventilator-associated pneumonia from the perspective of etiological characteristics and to verify its application effect.Methods:Based on a sampling survey, this study constructed preventive management strategies for ventilator-associated pneumonia by blocking pathogen characteristics from the perspective of both colonization and infection management in patients. From July 2021 to June 2023, a non-synchronous randomized controlled study was conducted, including a control group of 59 cases and an experimental group of 57 cases from ICU of Tianjin Teda Hospital, all of them were mechanically ventilated patients. The effectiveness of the strategy was confirmed.Results:In the control group, there were 35 males and 24 females, with an average age of (46.97 ± 18.84) years. In the experimental group, there were 39 males and 18 females, with an average age of (47.49 ± 13.85) years. During the study period, there were 9 cases of ventilator-associated pneumonia (VAP) in the control group and 2 cases in the experimental group, the difference between the two groups was statistically significant (exact odds ratio=0.031). The duration of mechanical ventilation in the experimental group (122.41 ± 18.36) h, which was shorter than that in the control group (187.62 ± 18.05) h, and the difference was statistically significant ( t=19.28, P<0.05). The length of ICU stay in the experimental group was (8.38 ± 0.79) d, in the control group was (10.99 ± 1.10) d, the difference between them was statistically significant ( t=14.66, P<0.05). On the 7th day, there were 7 cases of positive pathogenic bacteria in sputum culture in the experimental group, which was significantly different from the 29 cases in the control group ( χ2=16.73, P<0.05). Conclusions:The vector management strategy for preventing ventilator-associated pneumonia by blocking etiological characteristics can reduce the incidence of VAP, shorten the duration of mechanical ventilation and ICU stay, and reduce the pathogen load in the sputum of mechanically ventilated patients on the 7th day.
9.Evaluation of the safety and efficacy of mitomycin C-perfluorooctyl bromide liposome nanoparticles in the treatment of human pterygium fibroblasts
Tao LI ; Lingshan LIAO ; Shenglan ZHU ; Juan TANG ; Xiaoli WU ; Qilin FANG ; Ying LI ; Biao LI ; Qin TIAN ; Junmei WAN ; Yi YANG ; Yueyue TAN ; Jiaqian LI ; Juan DU ; Yan ZHOU ; Dan ZHANG ; Xingde LIU
Recent Advances in Ophthalmology 2024;44(2):100-105
Objective To prepare a nano drug(PFOB@Lip-MMC)with liposome as the carrier,liquid perfluorooc-tyl bromide(PFOB)as core and mitomycin C(MMC)loading on the liposome shell and study its inhibitory effect on the proliferation of human pterygium fibroblasts(HPFs).Methods The thin film dispersion-hydration ultrasonic method was used to prepare PFOB@Lip-MMC and detect its physical and chemical properties.Cell Counting Kit-8,Cam-PI cell viability staining and flow cytometry were employed to detect the impact of different concentrations of PFOB@Lip-MMC on the via-bility of HPFs.DiI fluorescence labeled PFOB@Lip-MMC was used to observe the permeability of the nano drug to HPFs under a laser confocal microscope.After establishing HPF inflammatory cell models,they were divided into the control group(with sterile phosphate-buffered saline solution added),PFOB@Lip group(with PFOB@Lip added),MMC group(with MMC added),PFOB@Lip-MMC group(with PFOB@Lip-MMC added)and normal group(with fresh culture medi-um added)according to the experimental requirements.After co-incubation for 24 h,flow cytometer was used to detect the apoptosis rate of inflammatory cells,and the gene expression levels of interleukin(IL)-1β,prostaglandin E2(PGE2),tumor necrosis factor(TNF)-α and vascular endothelial growth factor(VEGF)in cells were analyzed by PCR.Results The average particle size and Zeta potential of PFOB@Lip-MMC were(103.45±2.17)nm and(27.34±1.03)mV,respec-tively,and its entrapped efficiency and drug loading rate were(72.85±3.28)%and(34.27±2.04)%,respectively.The sustained-release MMC of drug-loaded nanospheres reached(78.34±2.92)%in vitro in a 24-hour ocular surface environ-ment.The biological safety of PFOB@Lip-MMC significantly improved compared to MMC.In terms of the DiI fluorescence labeled PFOB@Lip-MMC,after co-incubation with inflammatory HPFs for 2 h,DiI fluorescence labeling was diffusely dis-tributed in the cytoplasm of inflammatory HPFs.The apoptosis rate of inflammatory HPFs in the PFOB@Lip-MMC group[(77.23±4.93)%]was significantly higher than that in the MMC group[(51.62±3.28)%].The PCR examination results showed that the gene transcription levels of IL-1 β,PGE2,TNF-α and VEGF in other groups were significantly reduced com-pared to the control group and PFOB@Lip group,with the most significant decrease in the PFOB@Lip-MMC group(all P<0.05).Conclusion In this study,a novel nano drug(PFOB@LIP-MMC)that inhibited the proliferation of HPFs was successfully synthesized,and its cytotoxicity was significantly reduced compared to the original drugs.It has good bio-compatibility and anti-inflammatory effects,providing a new treatment approach for reducing the recurrence rate after pte-rygium surgery.
10.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of

Result Analysis
Print
Save
E-mail