1.Impact of the number of microsatellite markers on the analysis of population genetic diversity of Schistosoma japonicum
Juan LONG ; Lang MA ; Hongying ZONG ; Zhipeng ZHOU ; Hao YAN ; Qinping ZHAO
Chinese Journal of Schistosomiasis Control 2025;37(3):239-246
		                        		
		                        			
		                        			 Objective To examine the impact of different numbers of microsatellite markers on the analysis of population genetic diversity of Schistosoma japonicum, so as to provide insights into studies on the population genetic diversity of S. japonicum. Methods Oncomelania hupensis snails were collected from a wasteland in Gong’an County, Hubei Province, and 37 S. japonicum-infected O. hupensis snails were identified using the cercarial shedding method. A single cercaria released from each S. japonicum-infected O. hupensis snail was collected, and 10 cercariae were randomly collected from DNA extraction. Nine previously validated microsatellite loci and 15 additional microsatellite loci screened from literature review and the GenBank database and confirmed with stable amplification efficiency were selected as molecular markers. Genomic DNA from cercariae was subjected to three multiplex PCR amplifications of microsatellite markers with the Type-it Microsatellite PCR kit, and genotyped using capillary electrophoresis. The population genetic diversity of S. japonicum cercariae DNA was analyzed with observed number of alleles (Na), effective number of alleles (Ae), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC), and tested for Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD). To further investigate the impact of the number of microsatellite loci on the population genetic diversity of S. japonicum, the number of microsatellite markers was sequentially assigned from 1 to 24, and the mean and standard deviation of Na were calculated for S. japonicum populations at different locus numbers. In addition, the coefficient of variation (CV) of allelic number (defined as the ratio of the standard deviation to the mean) was determined, and the variation in Na with increasing microsatellite locus numbers was analyzed. Results Genomic DNA from 345 S. japonicum cercariae was selected for genotyping of 24 microsatellite markers, and all 24 microsatellite loci met linkage equilibrium (standardized linkage disequilibrium coefficient D′ < 0.7, r2 < 0.3) and deviated from Hardy-Weinberg equilibrium (P < 0.001). The mean Na, Ae, Ho and He were 27.46 ± 2.18, 12.46 ± 0.95, 0.46 ± 0.03, and 0.91 ± 0.01 for 24 microsatellite loci in S. japonicum cercarial populations, respectively, and PIC ranged from 0.85 to 0.96, indicating high genome-wide representativeness of 24 microsatellite loci. The mean value of Na-Ae was higher in genotyping with 9 previously validated microsatellite loci (19.88 ± 8.43) than with all 24 loci (14.99 ± 8.09). As the number of microsatellite loci increased, the mean Na showed no significant variation; however, the standard deviation gradually decreased. Notably, if the locus number reached 18 or more, the variation in the standard deviation of Na remarkably reduced. In addition, the standard deviation of Na at 18 loci was less than 5% of the mean Na at 24 loci, with a CV of 4.6%. Conclusions The number of microsatellite loci significantly affects the population genetic diversity analysis of S. japonicum. Eighteen or more microsatellite loci are recommended for analysis of the population genetic diversity of S. japonicum under the current conditions of low-prevalence infection and unbalanced genetic distribution of S. japonicum. 
		                        		
		                        		
		                        		
		                        	
2. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
		                        		
		                        			
		                        			 Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I 
		                        		
		                        		
		                        		
		                        	
3.Population pharmacokinetics of mycophenolic acid in pediatric patients with primary IgA nephropathy
Juan CHEN ; Yanping GUAN ; Liangzhong SUN ; Yilei LI ; Haixia WEI ; Shouning ZHOU ; Yan CHEN ; Ping ZHENG
China Pharmacy 2024;35(1):69-74
		                        		
		                        			
		                        			OBJECTIVE To develop a population pharmacokinetic (PPK) model for mycophenolate mofetil active metabolite mycophenolic acid (MPA) in children with primary IgA nephropathy, explore the factors affecting the pharmacokinetic parameters of MPA, and provide a basis for clinical individualized therapy. METHODS Retrospective collection was conducted on 636 concentrations and clinical data from 47 pediatric patients with primary IgA nephropathy. PPK analysis was carried out by using the nonlinear mixed-effects model; the covariates were tested with a stepwise method. Goodness-of-fit plots, Bootstrap and visual predictive check were employed to evaluate the final model. RESULTS The pharmacokinetics of MPA in children with IgA nephropathy in vivo conformed to the first-order absorption and elimination two-compartment model (objective function value of 3 276.31). Covariate analysis suggested that body weight and albumin (ALB) levels were significant influencing factors on apparent clearance rate and apparent distribution volume. The typical values of PPK parameters of MPA in the final model were as follows: the central room had a distributed volume of 5.79 L, the clearance rate was 4.06 L/h, the volume of peripheral ventricular distribution was 430.93 L, the clearance rate between compartments was 15.40 L/h, the oral absorption rate constant was 1.29 h-1. After verification, most of the predicted corrected observed concentration points were within the 90% confidence interval of the predicted corrected simulated concentration, indicating that the MPA final model had good predictive performance. CONCLUSIONS The PPK model of MPA in children with primary IgA nephropathy is established in this study, identifying body weight and ALB levels are significant factors affecting MPA metabolism.
		                        		
		                        		
		                        		
		                        	
4.Efficacy evaluation and prognostic factors analysis of retinoblastoma based on propensity score inverse probability weighting method
Li-Juan SHI ; Li LI ; Fu-Yan SHI ; Xi-Bin ZHOU ; Zhi-Hong WU
Medical Journal of Chinese People's Liberation Army 2024;49(3):302-307
		                        		
		                        			
		                        			Objective To evaluate the efficacy of surgery,chemotherapy and surgery combined chemotherapy for retinoblastoma(RB),and analyze the prognostic factors of RB patients.Methods Clinical data of 1188 RB patients registered in the Surveillance,Epidemiology and End Results(SEER)database from January 2000 to December 2019 were retrospectively analyzed.The baseline characteristics of patients treated with surgery,chemotherapy or surgery combined with chemotherapy were balanced by inverse probability of treatment weighting(IPTW).Log-rank test analysis was used to compare the survival probability of patients in the 3 groups,and Cox regression models were used to analyse the factors influencing the prognosis of RB patients.Results A total of 1188 RB cases were included in this study,including 426 cases in surgery group,200 cases in chemotherapy group and 562 cases in surgery combined with chemotherapy group.After IPTW weighting,baseline data such as age,sex and race were balanced(P>0.05).Log-rank test results showed that the survival curves of the three groups were significantly different before and after weighting(P<0.05).After weighted,the survival of patients in surgery group was significantly better than that in chemotherapy group and surgery combined chemotherapy group(P<0.05),and there was no statistical significance between chemotherapy group and surgery combined chemotherapy group(P>0.05).The weighted patient survival probability at 1st,3rd and 5th years were 99.7%,98.9%and 98.6%in surgery group;97.4%,95.8%and 95.8%in chemotherapy group;and 97.9%,95.8%and 95.0%in surgery combined chemotherapy group.Cox regression analysis showed that compared with surgery group,the specific risk ratio of death was 1.367(95%CI 1.100-1.700)in chemotherapy group and 1.132(95%CI 0.963-1.330)in combined chemotherapy group.Compared with patients with 1 RB lesion,the patient-specific mortality risk ratio for patients with 2 or more RB lesions was 0.399(95%CI 0.268-0.594).Conclusions Patients with RB have higher survival rates probability after treatment.After controlling the influence of age,sex and other factors,the effect of surgery was better among the three treatment methods.Multifocality may be an independent prognostic factor in RB patients.
		                        		
		                        		
		                        		
		                        	
5.Evaluation of the safety and efficacy of mitomycin C-perfluorooctyl bromide liposome nanoparticles in the treatment of human pterygium fibroblasts
Tao LI ; Lingshan LIAO ; Shenglan ZHU ; Juan TANG ; Xiaoli WU ; Qilin FANG ; Ying LI ; Biao LI ; Qin TIAN ; Junmei WAN ; Yi YANG ; Yueyue TAN ; Jiaqian LI ; Juan DU ; Yan ZHOU ; Dan ZHANG ; Xingde LIU
Recent Advances in Ophthalmology 2024;44(2):100-105
		                        		
		                        			
		                        			Objective To prepare a nano drug(PFOB@Lip-MMC)with liposome as the carrier,liquid perfluorooc-tyl bromide(PFOB)as core and mitomycin C(MMC)loading on the liposome shell and study its inhibitory effect on the proliferation of human pterygium fibroblasts(HPFs).Methods The thin film dispersion-hydration ultrasonic method was used to prepare PFOB@Lip-MMC and detect its physical and chemical properties.Cell Counting Kit-8,Cam-PI cell viability staining and flow cytometry were employed to detect the impact of different concentrations of PFOB@Lip-MMC on the via-bility of HPFs.DiI fluorescence labeled PFOB@Lip-MMC was used to observe the permeability of the nano drug to HPFs under a laser confocal microscope.After establishing HPF inflammatory cell models,they were divided into the control group(with sterile phosphate-buffered saline solution added),PFOB@Lip group(with PFOB@Lip added),MMC group(with MMC added),PFOB@Lip-MMC group(with PFOB@Lip-MMC added)and normal group(with fresh culture medi-um added)according to the experimental requirements.After co-incubation for 24 h,flow cytometer was used to detect the apoptosis rate of inflammatory cells,and the gene expression levels of interleukin(IL)-1β,prostaglandin E2(PGE2),tumor necrosis factor(TNF)-α and vascular endothelial growth factor(VEGF)in cells were analyzed by PCR.Results The average particle size and Zeta potential of PFOB@Lip-MMC were(103.45±2.17)nm and(27.34±1.03)mV,respec-tively,and its entrapped efficiency and drug loading rate were(72.85±3.28)%and(34.27±2.04)%,respectively.The sustained-release MMC of drug-loaded nanospheres reached(78.34±2.92)%in vitro in a 24-hour ocular surface environ-ment.The biological safety of PFOB@Lip-MMC significantly improved compared to MMC.In terms of the DiI fluorescence labeled PFOB@Lip-MMC,after co-incubation with inflammatory HPFs for 2 h,DiI fluorescence labeling was diffusely dis-tributed in the cytoplasm of inflammatory HPFs.The apoptosis rate of inflammatory HPFs in the PFOB@Lip-MMC group[(77.23±4.93)%]was significantly higher than that in the MMC group[(51.62±3.28)%].The PCR examination results showed that the gene transcription levels of IL-1 β,PGE2,TNF-α and VEGF in other groups were significantly reduced com-pared to the control group and PFOB@Lip group,with the most significant decrease in the PFOB@Lip-MMC group(all P<0.05).Conclusion In this study,a novel nano drug(PFOB@LIP-MMC)that inhibited the proliferation of HPFs was successfully synthesized,and its cytotoxicity was significantly reduced compared to the original drugs.It has good bio-compatibility and anti-inflammatory effects,providing a new treatment approach for reducing the recurrence rate after pte-rygium surgery.
		                        		
		                        		
		                        		
		                        	
6.Evaluation of the correlation between diabetic retinopathy and diabetic ne-phropathy by emission computed tomography and clinical testing data via convolutional neural network
Juan TANG ; Qinghua LI ; Xiuying DENG ; Ting LU ; Guoqiang TANG ; Zhiwu LIN ; Xingde LIU ; Xiaoli WU ; Qilin FANG ; Ying LI ; Xiao WANG ; Yan ZHOU ; Biao LI ; Chuanqiang DAI ; Tao LI
Recent Advances in Ophthalmology 2024;44(2):127-132
		                        		
		                        			
		                        			Objective To evaluate the relationship between diabetic nephropathy(DN)and diabetic retinopathy(DR)in patients with type 2 diabetes mellitus(T2DM)based on imaging and clinical testing data.Methods Totally 600 T2DM patients who visited the First People's Hospital of Ziyang from March 2021 to December 2022 were included.The fundus photography and fundus fluorescein angiography were performed on all these patients and their age,gender,T2DM duration,cardiovascular diseases,cerebrovascular disease,hypertension,smoking history,drinking history,body mass in-dex,systolic blood pressure,diastolic blood pressure and other clinical data were collected.The levels of fasting blood glu-cose(FPG),triglyceride(TG),total cholesterol(TC),high-density lipoprotein cholesterol(HDL-C),low-density lipo-protein cholesterol(LDL-C),glycosylated hemoglobin(HbA1c),24 h urinary albumin(UAlb),urinary albumin to creati-nine ratio(ACR),serum creatinine(Scr)and blood urea nitrogen(BUN)were measured.Logistic regression was used to analyze the risk factors associated with DR.DR staging was performed according to fundus images,and the convolutional neural network(CNN)algorithm was used as an image analysis method to explore the correlation between DR and DN based on emission computed tomography(ECT)and clinical testing data.Results The average lesion area rates of DR and DN detected by the CNN in the non-DR,mild-non-proliferative DR(NPDR),moderate-NPDR,severe-NPDR and pro-liferative DR(PDR)groups were higher than those obtained by the traditional algorithm(TCM).As DR worsened,the Scr,BUN,24 h UAlb and ACR gradually increased.Besides,the incidence of DN in the non-DR,mild-NPDR,moderate-NPDR,severe-NPDR and PDR groups was 1.67%,8.83%,16.16%,22.16%and 30.83%,respectively.Logistic regression analysis showed that the duration of T2DM,smoking history,HbA1c,TC,TG,HDL-C,LDL-C,24 h UAlb,Scr,BUN,ACR and glomerular filtration rate(GFR)were independent risk factors for DR.Renal dynamic ECT analysis demonstrated that with the aggravation of DR,renal blood flow perfusion gradually decreased,resulting in diminished renal filtration.Conclusion The application of CCN in the early stage DR and DN image analysis of T2DM patients will improve the diag-nosis accuracy of DR and DN lesion area.The DN is worsening as the aggravation of DR.
		                        		
		                        		
		                        		
		                        	
7.Optimization and practice of occupational education curriculum system for nuclear emergency medical rescue
Jiajin LIN ; Jing LI ; Wei HE ; Shenglong XU ; Dalu LIU ; Wei ZHANG ; Juan GUO ; Xia MIAO ; Yan ZHOU
Chinese Journal of Medical Education Research 2024;23(7):931-935
		                        		
		                        			
		                        			Nuclear emergency medical rescue is one of the important courses of military medical professional education, and improving the training level of nuclear emergency medical rescue plays a very important role in improving post competency of trainees. Based on the problem of disconnection between "teaching" and "need" in the occupational education of nuclear emergency medical rescue in the past, this study proposes the curriculum goal of "the combination of three abilities" and performs the optimization and practice of the occupational education curriculum system of nuclear emergency medical rescue from the aspects of curriculum setting, curriculum content, teaching methods, and assessment and evaluation. The results show that the new curriculum system can significantly improve the comprehensive ability of nuclear emergency medical rescue among trainees and better meet the requirements for their posts, thereby playing an important role in cultivating high-quality military medical talents in nuclear emergency medical rescue.
		                        		
		                        		
		                        		
		                        	
8.Rosmarinic acid ameliorates acute liver injury by activating NRF2 and inhibiting ROS/TXNIP/NLRP3 signal pathway
Jun-fu ZHOU ; Xin-yan DAI ; Hui LI ; Yu-juan WANG ; Li-du SHEN ; DU Xiao-bi A ; Shi-ying ZHANG ; Jia-cheng GUO ; Heng-xiu YAN
Acta Pharmaceutica Sinica 2024;59(6):1664-1673
		                        		
		                        			
		                        			 Acute liver injury (ALI) is one of the common severe diseases in clinic, which is characterized by redox imbalance and inflammatory storm. Untimely treatment can easily lead to liver failure and even death. Rosmarinic acid (RA) has been proved to have anti-inflammatory and antioxidant activity, but it is not clear how to protect ALI through antioxidation and inhibition of inflammation. Therefore, this study explored the therapeutic effect and molecular mechanism of RA on ALI through 
		                        		
		                        	
9.The Plant ATG8-binding Proteins
Feng-Juan ZHANG ; Hong-Juan JING ; Guang-Zhou ZHOU ; Shuai-Jia QIN ; Chu-Yan HAN
Progress in Biochemistry and Biophysics 2024;51(6):1371-1381
		                        		
		                        			
		                        			ATG8-binding proteins play a key role in autophagy, selective autophagy or non-autophagy process by interacting between ATG8 and the ATG8-interacting motif (AIM) or the ubiquitin-interacting motif (UIM). There is great progress of ATG8-binding proteins in yeast and mammalian studies. However, the plant domain is still lagging behind. Therefore, the structure characteristics of plant ATG8 binding protein were firstly outlined. Unlike the single copy of ATG8 gene in yeast, many homologous genes have been identified in plant. The LIR/ AIM-docking site (LDS) of ATG8 protein contains W and L pockets and is responsible for binding to AIM. The ATG8 protein binds to UIM-containing proteins via UIM-docking site (UDS) instead of LDS. UDS is in the opposite position to LDS, so the ATG8 can bind both AIM and UIM proteins. Secondly, the structure and function of ATG8-binding proteins, especially the selective autophagy receptors, were systematically described. The protein NBR1 and Joka2, as proteaphagy receptors, guide ubiquitination protein aggregates to autophagosome for degradation by binding to AIM and ATG8 in Arabidopsis and tobacco, respectively. AtNBR1 also promotes plant immunity by binding the capsid protein of cauliflower mosaic virus and silencing suppressor HCpro of turnip mosaic virus, mediating pathogen autophagy. AtNBR1 still degrades chloroplast by microautophagy under photoinjure or chlorophagy during ibiotic stress. And the protein ORM mediates the degradation of plant immune receptor flagellin sensing 2 (FLS2) through AIM binding to ATG8. Interestingly, ATI1 and ATI2 participate in both chlorophagy and ERphagy. Otherwise, ER membrane protein AtSec62, soluble protein AtC53, and ubiquitin-fold modifier1-specific ligase 1 (UFL1) can be directly bound to ATG8 as ER autophagy receptors. As pexophagy receptor, AtPEX6 and AtPEX10 bind to ATG8 via AIM and participate in pexophagy. RPN10, as a 26S proteasome subunit, whose C-terminal UIM1 and UIM2 bind ubiquitin and ATG8, respectively, mediates the selective autophagy degradation of 26S proteasome inactivation when fully ubiquitinated. Plant-specific mitochondrial localization proteins FCS-like zinc finger (FLZ) and friendly (FMT) may also be mitophagy receptors. CLC2 binds to ATG8 via the AIM-LDS docking site and is recruited to autophagy degradation on the Golgi membrane. The tryptophan-rich sensory protein (TSPO) in Arabidopsis was involved in clearing free heme, porphyrin and plasma membrane intrinsic protein 2;7 (PIP2;7) through the combination of AIM and ATG8. The conformation of GSNOR1 changes during anoxia, exposing the interaction between AIM and ATG8, leading to selective degradation of GSNOR1. At last, the ATG8 binding proteins involved in autophagosome closure, transport and synthetic synthesis was summarized. For example, plant-specific FYVE domain protein required for endosomal sorting 1 (FREE1) is involved in the closure of autophagosomes during nutrient deficiency. Therefore, according to the recent research advances, the structure and function of plant ATG8-binding proteins were systematically summarized in this paper, in order to provide new ideas for the study of plant selective autophagy and autophagy. 
		                        		
		                        		
		                        		
		                        	
10.Different methods in predicting mortality of pediatric intensive care units sepsis in Southwest China
Rong LIU ; Zhicai YU ; Changxue XIAO ; Shufang XIAO ; Juan HE ; Yan SHI ; Yuanyuan HUA ; Jimin ZHOU ; Guoying ZHANG ; Tao WANG ; Jianyu JIANG ; Daoxue XIONG ; Yan CHEN ; Hongbo XU ; Hong YUN ; Hui SUN ; Tingting PAN ; Rui WANG ; Shuangmei ZHU ; Dong HUANG ; Yujiang LIU ; Yuhang HU ; Xinrui REN ; Mingfang SHI ; Sizun SONG ; Jumei LUO ; Juan LIU ; Juan ZHANG ; Feng XU
Chinese Journal of Pediatrics 2024;62(3):204-210
		                        		
		                        			
		                        			Objective:To investigate the value of systemic inflammatory response syndrome (SIRS), pediatric sequential organ failure assessment (pSOFA) and pediatric critical illness score (PCIS) in predicting mortality of pediatric sepsis in pediatric intensive care units (PICU) from Southwest China.Methods:This was a prospective multicenter observational study. A total of 447 children with sepsis admitted to 12 PICU in Southwest China from April 2022 to March 2023 were enrolled. Based on the prognosis, the patients were divided into survival group and non-survival group. The physiological parameters of SIRS, pSOFA and PCIS were recorded and scored within 24 h after PICU admission. The general clinical data and some laboratory results were recorded. The area under the curve (AUC) of the receiver operating characteristic curve was used to compare the predictive value of SIRS, pSOFA and PCIS in mortality of pediatric sepsis.Results:Amongst 447 children with sepsis, 260 patients were male and 187 patients were female, aged 2.5 (0.8, 7.0) years, 405 patients were in the survival group and 42 patients were in the non-survival group. 418 patients (93.5%) met the criteria of SIRS, and 440 patients (98.4%) met the criteria of pSOFA≥2. There was no significant difference in the number of items meeting the SIRS criteria between the survival group and the non-survival group (3(2, 4) vs. 3(3, 4) points, Z=1.30, P=0.192). The pSOFA score of the non-survival group was significantly higher than that of the survival group (9(6, 12) vs. 4(3, 7) points, Z=6.56, P<0.001), and the PCIS score was significantly lower than that of the survival group (72(68, 81) vs. 82(76, 88) points, Z=5.90, P<0.001). The predictive value of pSOFA (AUC=0.82) and PCIS (AUC=0.78) for sepsis mortality was significantly higher than that of SIRS (AUC=0.56) ( Z=6.59, 4.23, both P<0.001). There was no significant difference between pSOFA and PCIS ( Z=1.35, P=0.176). Platelet count, procalcitonin, lactic acid, albumin, creatinine, total bilirubin, activated partial thromboplastin time, prothrombin time and international normalized ratio were all able to predict mortality of sepsis to a certain degree (AUC=0.64, 0.68, 0.80, 0.64, 0.68, 0.60, 0.77, 0.75, 0.76, all P<0.05). Conclusion:Compared with SIRS, both pSOFA and PCIS had better predictive value in the mortality of pediatric sepsis in PICU.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail