1.Mechanism of Lijin manipulation regulating scar formation in skeletal muscle injury repair in rabbits
Kaiying LI ; Xiaoge WEI ; Fei SONG ; Nan YANG ; Zhenning ZHAO ; Yan WANG ; Jing MU ; Huisheng MA
Chinese Journal of Tissue Engineering Research 2025;29(8):1600-1608
BACKGROUND:Lijin manipulation can promote skeletal muscle repair and treat skeletal muscle injury.However,the formation of fibrosis and scar tissue hyperplasia are closely related to the quality of skeletal muscle repair.To study the regulatory effect of Lijin manipulation on the formation of fibrosis and scar tissue hyperplasia is helpful to explain the related mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury. OBJECTIVE:To explore the mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury in rabbits,thereby providing a scientific basis for clinical treatment. METHODS:Forty-five healthy adult Japanese large-ear white rabbits were randomly divided into blank group,model group and Lijin group,with 15 rats in each group.Gastrocnemius strike modeling was performed in both model group and Lijin group.The Lijin group began to intervene with tendon manipulation on the 3rd day after modeling,once a day,and 15 minutes at a time.Five animals in each group were killed on the 7th,14th and 21st days after modeling.The morphology and inflammatory cell count of gastrocnemius were observed by hematoxylin-eosin staining,the collagen fiber amount was observed by Masson staining,the expression of interleukin-6 and interleukin-10 in gastrocnemius was detected by ELISA.The protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin,alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen were detected by western blot and RT-PCR,respectively,and the expression of type Ⅰ collagen protein was detected by immunohistochemistry. RESULTS AND CONCLUSION:Hematoxylin-eosin staining and Masson staining showed that compared with the model group,inflammatory cell infiltration and collagen fiber content decreased in the Lijin group(P<0.01),and the muscle fibers gradually healed.ELISA results showed that compared with the model group,the expression of interleukin-6 in the Lijin group continued to decrease(P<0.05),and the expression of interleukin-10 increased on the 7th day after modeling(P<0.05)and then showed a decreasing trend(P<0.05).Western blot and RT-PCR results showed that compared with the model group,the protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin in the Lijin group were significantly increased on the 14th day after modeling(P<0.05),but decreased on the 21st day(P<0.05);the protein and mRNA expressions of alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen in the Lijin group were significantly decreased compared with those in the model group(P<0.05).Immunohistochemical results showed that the expression of type Ⅰ collagen in the Lijin group was significantly lower than that in the model group(P<0.05).To conclude,Lijin manipulation could improve the repair quality of skeletal muscle injury by inhibiting inflammation,promoting the proliferation and differentiation of muscle satellite cells,and reducing fibrosis.
2.Study on accumulation of polysaccharide and steroid components in Polyporus umbellatus infected by Armillaria spp.
Ming-shu YANG ; Yi-fei YIN ; Juan CHEN ; Bing LI ; Meng-yan HOU ; Chun-yan LENG ; Yong-mei XING ; Shun-xing GUO
Acta Pharmaceutica Sinica 2025;60(1):232-238
In view of the few studies on the influence of
3.Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors
Hong-zhan WANG ; Ya-jun YANG ; Ying YANG ; Fei YE ; Jin-ying TIAN ; Chuan-ming ZHANG ; Zhi-yan XIAO
Acta Pharmaceutica Sinica 2025;60(1):164-171
Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. Based on the previously identified potent XO inhibitor
4.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
5.Exploration of the Acupoint Selection Rules of Acupuncture for the Treatment of Tic Disorders in Children Based on Data Mining Techniques
Shan-Hong WU ; Zi-Han GONG ; Yan WANG ; Yang GAO ; Yi-Ming YUAN ; Ming-Yue ZHAO ; Zi-Wei ZHANG ; Tian-Yi LI ; Fei PEI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):1083-1090
Objective To analyze the acupoint selection rules of acupuncture for the treatment of tic disorders in children based on data mining techniques.Methods A computerized search was conducted for the clinical research literature on acupuncture treatment of tic disorders in children included in the CNKI,Wanfang,VIP,SinoMed,and PubMed databases from January 1992 to December 2022.A database was established by Excel 2019 to count the commonly used treatment methods and analyze the high-frequency application methods acupuncture(high-frequency acupoints,channel entry of acupoints,acupoint association rules,and acupoint clustering),auricular point seed-pressing(high-frequency auricular points,and acupoint association rules),and the high frequency division of cluster needling of scalp point.Results A total of 190 valid literature articles were included,involving 270 acupuncture prescriptions;among them,184 acupoints were counted in the acupuncture method,with a total application frequency of 1 906 times,and the high-frequency application of the acupoints in descending order were Baihui(DU20),Taichong(LR3),Fengchi(GB20),Hegu(LI4),Sanyinjiao(SP6),Neiguan(PC6),Shenmen(HT7),Zusanli(ST36),Yintang(EX-HN3),Sishencong(EX-HN1);and the high-frequency meridians were governor vessol,foot taiyang stomach meridian,foot taiyang stomach meridian,foot shaoyang gallbladder meridian,hand taiyang large intestine meridian,foot taiyang bladder meridian,foot jueyin gallbladder meridian;three sets of strong association rules and five clusters of acupoints were analyzed by SPSS modeler 18.0 and IBM SPSS Statistics 26.0 software.There were 29 acupoints of auricular point seed-pressing,application total frequency was 206 times,high-frequency application of auricular points in descending order of Shenmen(HT7),liver,heart,subcortex,kidney;four groups of acupoint strong association rules were obtained through the analysis of SPSS modeler 18.0 software.A total of 14 zones were involved in the application of cephalic acupoint plexus zoning,of which the high-frequency zones were parietal anterior temporal diagonal,parietal parietal 1,and chorea tremor control zone.Conclusion Acupuncture treatment of tic disorders in children,according to its pathogenesis(liver hyperactivity,kidney depletion,spleen deficiency,phlegm disturbance,etc.)and tic site,select acupoints compatibility,and mostly choose yang meridian acupoints,which is related to the nature and treatment characteristics of wind pathogen.Children's tic disorders are closely related to emotional disorders,therefore acupuncture and auricular acupoints all emphasize the method of soothing the liver and clearing the heart,and regulating the emotional state.Cluster needling of scalp point mostly used parietal temporal anterior oblique line,parietal 1 line,and dance tremor control area for the treatment of tic disorders.For children,auricular point seed-pressing and cluster needling of scalp point has the minimun of pain,the effect of treatment is long,and it is not easy to have dangerous situations such as bent needle,broken needle and so on.
6.Application of dynamic coronary roadmap in coronary artery low-dose mode
Xiaomin WU ; Zi YE ; Yaping WANG ; Yang LIU ; Yi'an YAO ; Fei CHEN ; Yiping WANG ; Yu TANG ; Yan LAI
Journal of Interventional Radiology 2024;33(3):236-239
Objective To clarify whether the use of dynamic coronary artery roadmap(DCR)technology in a low-dose mode with 7.5 frames per second during coronary intervention can further reduce the total radiation dose,fluoroscopy time,and contrast agent usage.Methods A total of 94 patients,who received coronary angiography at the Shanghai Tongji Hospital of China between July 2022 and December 2022,were enrolled in this study.The patients were randomly divided into DCR group(n=53)and control group(n=41).DCR technology was used in the DCR group to guide the performance of percutaneous coronary intervention(PCI),while low-dose mode coronary angiography was adopted in the control group.The total air kerma(AK),dose-area product(DAP),intraoperative fluoroscopy time,and contrast agent usage were compared between the two groups.Results In the DCR group AK was(597.9±222.8)mGy,which was significantly lower than(717.0±326.8)mGy in the control group(P=0.039);DAP was(33.2±13.3)Gycm2/s,which was also remarkably lower than(41.3±21.5)Gycm2/s in the control group(P=0.027).In the DCR group and the control group,the intraoperative fluoroscopy time was(9.8± 3.3)min and(12.1±4.3)min respectively(P<0.01),and the contrast agent usage was(122.3±19.0)mL and(130.5± 28.5)mL respectively(P=0.116).Conclusion In a low-dose mode during coronary intervention,the use of DCR technology can further reduce radiation dose,fluoroscopy time,and contrast agent usage.(J Intervent Radiol,2024,33:236-239)
7.Experimental study on treatment of severe limb ischemia with Ad-hVEGF-hHGF gene
Rui ZHONG ; Jianing WANG ; Lei ZHANG ; Lingyun GUO ; Jianye YANG ; Fei ZHENG ; Yuwen YAN ; Danli YU ; Liguo TAN
The Journal of Practical Medicine 2024;40(5):639-645
Objective To explore the role and efficacy of VEGF and HGF gene adenovirus vector in promoting angiogenesis in ischemic tissue.Methods 84 Kunming mice were randomly divided into sham group,control group,VEGF group,HGF group and VEGF+HGF group,and the left lower limb ischemia model was established.The blood supply of ischemic tissue was observed by rheometer,and the expression levels of VEGF and HGF in each group were detected by Western Blot and ELISA.Immunohistochemical staining was used to detect angiogenesis(CD31,SMA)in ischemic tissues.Safety was assessed by side effects during treatment in mice.Results After the successful modeling,the blood flow velocity of the left lower limb in each group decreased significantly.On the 7th day after operation,the blood flow of the left lower limb in each group was significantly better than that on the 0th day after operation(P<0.05),and the blood flow of the left lower limb in Ad-VEGF-HGF group was significantly better than that in other groups(P<0.05).On the 28th day after operation,the blood flow of the left lower limb in Ad-VEGF-HGF group gradually stabilized,the blood flow in Ad-VEGF-HGF group was significantly better than that in other groups,and both VEGF group and HGF group were significantly better than the control group(P<0.05).On the 7th,14th,and 28th days following surgery,HGF and VEGF protein levels in the Ad-HGF,Ad-VEGF,and Ad-VEGF-HGF groups were substantially greater than those in the control group(P<0.05).The expression level in the Ad-VEGF-HGF group peaked on the 14th day(all P<0.001)and subsequently declined to preoperative levels on the 28th day after operation.Conclusion Ad-VEGF-HGF gene injection can effectively boost VEGF and HGF protein expression and rapidly reach the relative peak level,encour-aging angiogenesis after lower limb ischemia,increasing blood flow,and improving lower limb circulation.
8.The combination of berberine and cinnamon polyphenol can improve glucose metabolism in T2DM rats through Bas-TGR5-GLP-1
Wan LIU ; Fei LIANG ; Tie-quan CAI ; Ying LI ; Le LI ; Shu-cai YANG ; Ying LIU ; Yan ZHAO
Acta Pharmaceutica Sinica 2024;59(1):135-142
Berberine (BBR) is the main pharmacological active ingredient of Coptidis, which has hypoglycemic effect, but its clinical application is limited due to its poor oral bioavailability. Polyphenols, derived from cinnamon, are beneficial for type 2 diabetes mellitus (T2DM). The combination of both may have an additive effect. The aim of this study was to investigate the hypoglycemic effect and mechanism of combined medication in diabetic rats. The modeling rats were randomly divided into 5 groups (berberine group, cinnamon group, combined group, metformin group, diabetic control group) and normal control group. The animal experiments were approved by the Animal Ethics Committee (approval number: HMUIRB2022003). The subjects were given orally, and the control group was given equal volume solvent and body weight was measured weekly. Thirty days after administration, oral glucose tolerance test and insulin sensitivity test were performed, and fasting blood glucose (FBG), glycated serum protein (GSP), and serum insulin (INS) levels were detected; high-throughput sequencing technology was used to detect intestinal microbiota structure; real-time quantitative PCR (RT-qPCR) and Western blot were used to detect G protein-coupled receptor 5 (TGR5) and glucagon-like peptide-1 (GLP-1) expression levels. The results showed that, compared with the diabetic control group, the levels of FBG (
9.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
10.Application of Mitochondrial Targeting Strategy of Nano-delivery System in Tumor Diagnosis and Treatment
Jun QU ; Shuang YAN ; Long-Tian-Yang LEI ; Fei-Jun OUYANG ; Hai-Tao ZHANG ; Xu-Ping QIN
Progress in Biochemistry and Biophysics 2024;51(1):70-81
Tumor is one of the major diseases that endanger people’s health. At present, the treatments used for tumor include surgery, chemotherapy, radiotherapy and so on. Nonetheless, the traditional treatments have some disadvantages, such as insufficient treatment effect, liable to cause multidrug resistance, toxicity and side effect. Further research and exploration of tumor treatment schemes are still necessary. As the energy converter of cells, mitochondria are currently considered to be one of the most important targets for the design of new drugs for tumor, cardiovascular and neurological diseases. Nano-drug delivery carriers have the characteristics of being easily modified with active targeting groups, and it can achieve accurate targeted drug delivery to cells and organelles. This paper reviews the application of mitochondrial targeted nanoparticles in tumor diagnosis and treatment from the aspects of inhibiting tumor cell proliferation, promoting tumor cell apoptosis, inhibiting tumor recurrence and metastasis, and inducing cell autophagy.

Result Analysis
Print
Save
E-mail