1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management.
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics.
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system.
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
4.SHI Zaixiang's Clinical Experience in Using Chaihu Guizhi Ganjiang Decoction (柴胡桂枝干姜汤) to Treat High Fever in Sepsis
Tingting ZHU ; Yingying LIU ; Hailan CUI ; Zhiying REN ; Mingjing SHAO ; Yan BIAN ; Liyan WANG ; Zhenjie CHEN ; Yuan LIU ;
Journal of Traditional Chinese Medicine 2025;66(16):1645-1648
This paper summarizes Professor SHI Zaixiang's clinical experience in treating high fever caused by sepsis using Chaihu Guizhi Ganjiang Decoction (柴胡桂枝干姜汤). He holds that the key pathogenesis of sepsis involves constrained heat in the shaoyang and internal accumulation of water and fluids. The clinical manifestations such as high fever, chills, and alternating sensations of cold and heat are attributed to pathogenic heat constrained in the shaoyang. Meanwhile, soft tissue edema and serous cavity effusions are due to shaoyang dysfunction and internal water retention. In clinical practice, treating sepsis-related high fever requires addressing both the shaoyang-constrained heat and the associated edema and effusions. The therapeutic approach focuses on harmonizing the shaoyang and resolving internal fluids, using Chaihu Guizhi Ganjiang Decoction as the base formula with flexible modifications. Professor SHI emphasizes that this formula shows a rapid antipyretic effect, particularly in cases where multiple anti-infective treatments have failed.
5.Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion
Juan JIANG ; Ning SONG ; Wenbo LIAN ; Congcong SHAO ; Wenwen GU ; Yan SHI
Laboratory Animal and Comparative Medicine 2025;45(4):393-402
Objective To construct intrauterine adhesion (IUA) mouse models induced by two different concentrations of ethanol injury, compare the phenotypes, and optimize a more stable IUA modeling method. Methods Twenty 8-week-old female C57BL/6N mice were randomly divided into two groups: the 95% ethanol injury group and the 50% ethanol injury group. Using a self-control method, the left uterine horn was infused with ethanol to establish the IUA model, while the right uterine horn was infused with saline as the sham operation. Five mice from each group were euthanized on day 7 and 15 after modeling, and uterine tissues were collected. Hematoxylin-eosin (HE) staining was used to observe the endometrial pathology, and Masson staining was used to assess the degree of endometrial fibrosis. Quantitative real-time PCR was employed to detect the expression levels of fibrosis markers and pro-inflammatory factors in the uterine tissues. Results Compared to the sham operation, these two ethanol injury led to a significant reduction in elasticity of the uterus, an increase in inflammatory infiltration, and a marked increase in the degree of fibrosis on day 7 after modeling (P<0.05). The 95% ethanol injury group showed a significant decrease in endometrial thickness (P<0.05), whereas no significant change was observed in the 50% ethanol injury group when compared to the sham operation (P>0.05). The expression levels of fibrotic marker molecules collagen type Ⅳ alpha 1 chain (Col4A1), α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and pro-inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were significantly elevated in the 50% ethanol injury group when compared to the sham operation (P<0.05), although there was an increasing trend of the same markers in the 95% ethanol injury group, the differences were not statistically significant (P>0.05). On day 15 after modeling, the histopathological changes in both ethanol injury groups were not significant when compared to the sham operation, the expression levels of Col4A1, TGF-β, TNF-α and IL-1β remained significantly higher in the 50% ethanol injury group (P<0.05), while only IL-1β was significantly elevated in the 95% ethanol injury group (P<0.05). Conclusion Uterine infusion with 95% ethanol results in more marked histopathological changes in the IUA mouse model compared to the 50% ethanol injury group. The 95% ethanol injury model is suitable for histopathological studies. However, the 50% ethanol injury group shows higher expression levels of fibrosis markers and pro-inflammatory factors compared to the 95% ethanol injury group, suggesting that the 50% ethanol injury model is more suitable for molecular pathological study.
6.Advances in the role of ketone body metabolism in the pathogenesis of diabetic retinopathy
Jiaxin LI ; Yuanyuan ZHANG ; Yan SHAO
International Eye Science 2025;25(10):1623-1627
Ketone body metabolism plays a significant role in the development and progression of diabetic retinopathy(DR), which closely related to the system and local metabolic disorders as a major microvascular complication of diabetes mellitus. Previous research has established a close relationship between dyslipidemia and DR progression. Ketone bodies, comprising β-hydroxybutyrate, acetoacetate, and acetone, are metabolic products generated from fat breakdown when glucose metabolism is impaired. Studies have revealed that ketone body metabolism is intricately linked to multiple pathophysiological processes in DR, including oxidative stress, inflammatory responses, and neurodegeneration within retinal cells. This article provides a review exploring the impact of ketone body metabolism on the pathogenesis of DR, and systematically reviews the latest research progress on the impact of ketone bodies on the core pathological links such as retinal vascular barrier destruction, glial cell activation and angiogenesis through metabolic reprogramming, epigenetic modification and cell signal transduction, so as to provide a theoretical basis for in-depth understanding of the metabolic driving mechanism of DR.
7.Phenomics of traditional Chinese medicine 2.0: the integration with digital medicine
Min Xu ; Xinyi Shao ; Donggeng Guo ; Xiaojing Yan ; Lei Wang ; Tao Yang ; Hao LIANG ; Qinghua PENG ; Lingyu Linda Ye ; Haibo Cheng ; Dayue Darrel Duan
Digital Chinese Medicine 2025;8(3):282-299
Abstract
Modern western medicine typically focuses on treating specific symptoms or diseases, and traditional Chinese medicine (TCM) emphasizes the interconnections of the body’s various systems under external environment and takes a holistic approach to preventing and treating diseases. Phenomics was initially introduced to the field of TCM in 2008 as a new discipline that studies the laws of integrated and dynamic changes of human clinical phenomes under the scope of the theories and practices of TCM based on phenomics. While TCM Phenomics 1.0 has initially established a clinical phenomic system centered on Zhenghou (a TCM definition of clinical phenome), bottlenecks remain in data standardization, mechanistic interpretation, and precision intervention. Here, we systematically elaborates on the theoretical foundations, technical pathways, and future challenges of integrating digital medicine with TCM phenomics under the framework of “TCM phenomics 2.0”, which is supported by digital medicine technologies such as artificial intelligence, wearable devices, medical digital twins, and multi-omics integration. This framework aims to construct a closed-loop system of “Zhenghou–Phenome–Mechanism–Intervention” and to enable the digitization, standardization, and precision of disease diagnosis and treatment. The integration of digital medicine and TCM phenomics not only promotes the modernization and scientific transformation of TCM theory and practice but also offers new paradigms for precision medicine. In practice, digital tools facilitate multi-source clinical data acquisition and standardization, while AI and big data algorithms help reveal the correlations between clinical Zhenghou phenomes and molecular mechanisms, thereby improving scientific rigor in diagnosis, efficacy evaluation, and personalized intervention. Nevertheless, challenges persist, including data quality and standardization issues, shortage of interdisciplinary talents, and insufficiency of ethical and legal regulations. Future development requires establishing national data-sharing platforms, strengthening international collaboration, fostering interdisciplinary professionals, and improving ethical and legal frameworks. Ultimately, this approach seeks to build a new disease identification and classification system centered on phenomes and to achieve the inheritance, innovation, and modernization of TCM diagnostic and therapeutic patterns.
8.Herbal Textual Research on Tribuli Fructus and Astragali Complanati Semen in Famous Classical Formulas
Jiaqin MOU ; Wenjing LI ; Yanzhu MA ; Yue ZHOU ; Wenfeng YAN ; Shijun YANG ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):241-251
By systematically combing ancient and modern literature, this paper examined Tribuli Fructus and Astragali Complanati Semen(ACS) used in the famous classical formulas from the aspects of name, origin, production area, harvesting and processing, clinical efficacy, so as to provide a basis for the development of famous classical formulas containing such medicinal materials. The results showed that the names of Tribuli Fructus in the past dynasties were mostly derived from its morphology, and there were nicknames such as Baijili, Cijili and Dujili. The name of ACS in the past dynasties were mostly originated from its production areas, and there were nicknames such as Baijili, Shayuan Jili and Tongjili. Because both of them had the name of Baijili, confusion began to appear in the Song dynasty. In ancient and modern times, the main origin of Tribuli Fructus were Tribulus terrestris, and ancient literature recorded the genuine producing areas of Tribuli Fructus was Dali in Shaanxi and Tianshui in Gansu, but today it is mainly cultivated in Anhui and Shandong. The fruit is the medicinal part, harvested in autumn throughout history. There is no description of the quality of Tribuli Fructus in ancient times, and the plump, firm texture, grayish-white color is the best in modern times. Traditional processing methods for Tribuli Fructus included stir-frying and wine processing, while modern commonly used is purified, fried and salt-processed. The ancient records of Tribuli Fructus were spicy, bitter, and warm in nature, with modern research adding that it is slightly toxic. The main effects of ancient and modern times include treating wind disorders, improving vision, promoting muscle growth, and treating vitiligo. The mainstream base of ACS used throughout history is Astragalus complanatus. Ancient texts indicated ACS primarily originated from Shaanxi province. Today, the finest varieties come from Tongguan and Dali in Shaanxi. The medicinal part is the seed, traditionally harvested in autumn. Modern harvesting occurs in late autumn or early winter, followed by sun-drying. Ancient texts valued seeds with a fragrant aroma as superior, while modern standards prioritize plump, uniform and free of impurities. Traditional processing methods for ACS included frying until blackened and wine-frying, while modern practice commonly employs purification methods. In terms of medicinal properties, the ancient and modern records are sweet and warm in nature. Due to originally classified under Tribuli Fructus, its effects were thus regarded as equivalent to those of Tribuli Fructus, serving as the medicine for treating wind disorders, additional functions included tonifying the kidneys and treating vitiligo. The present record of its efficacy is to tonify the kidney and promote Yang, solidify sperm and reduce urine, nourish the liver and brighten the eye, etc. Based on the textual research results, it is suggested that when developing the famous classical formulas of Tribuli Fructus medicinal materials, we should pay attention to the specific reference object of Baijili, T. terrestris and A. complanatus should be identified and selected, and the processing method should be in accordance with the requirements of the formulas.
9.Expression and prognostic value of triggering receptor expressed on myeloid cells-1 in patients with cirrhotic ascites and intra-abdominal infection
Feng WEI ; Xinyan YUE ; Xiling LIU ; Huimin YAN ; Lin LIN ; Tao HUANG ; Yantao PEI ; Shixiang SHAO ; Erhei DAI ; Wenfang YUAN
Journal of Clinical Hepatology 2025;41(5):914-920
ObjectiveTo analyze the expression level of triggering receptor expressed on myeloid cells-1 (TREM-1) in serum and ascites of patients with cirrhotic ascites, and to investigate its correlation with clinical features and inflammatory markers and its role in the diagnosis of infection and prognostic evaluation. MethodsA total of 110 patients with cirrhotic ascites who were hospitalized in The Fifth Hospital of Shijiazhuang from January 2019 to December 2020 were enrolled, and according to the presence or absence of intra-abdominal infection, they were divided into infection group with 72 patients and non-infection group with 38 patients. The patients with infection were further divided into improvement group with 38 patients and non-improvement group with 34 patients. Clinical data and laboratory markers were collected from all patients. Serum and ascites samples were collected, and ELISA was used to measure the level of TREM-1. The independent-samples t test was used for comparison of normally distributed continuous data between two groups; the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups, and the Kruskal-Wallis H test was used for comparison between multiple groups; the chi-square test was used for comparison of categorical data between two groups. A Spearman correlation analysis was used to investigate the correlation between indicators. A multivariate Logistic regression analysis was used to identify the influencing factors for the prognosis of patients with cirrhotic ascites and infection. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic and prognostic efficacy of each indicator, and the Delong test was used for comparison of the area under the ROC curve (AUC). ResultsThe level of TREM-1 in ascites was significantly positively correlated with that in serum (r=0.50, P<0.001). Compared with the improvement group, the non-improvement group had a significantly higher level of TREM-1 in ascites (Z=-2.391, P=0.017) and serum (Z=-2.544, P=0.011), and compared with the non-infection group, the infection group had a significantly higher level of TREM-1 in ascites (Z=-3.420, P<0.001), while there was no significant difference in the level of TREM-1 in serum between the two groups (P>0.05). The level of TREM-1 in serum and ascites were significantly positively correlated with C-reactive protein (CRP), procalcitonin (PCT), white blood cell count, and neutrophil-lymphocyte ratio (r=0.288, 0.344, 0.530, 0.510, 0.534, 0.454, 0.330, and 0.404, all P<0.05). The ROC curve analysis showed that when PCT, CRP, and serum or ascitic TREM-1 were used in combination for the diagnosis of cirrhotic ascites with infection, the AUCs were 0.715 and 0.740, respectively. The multivariate Logistic regression analysis showed that CRP (odds ratio [OR]=1.019, 95% confidence interval [CI]: 1.001 — 1.038, P=0.043) and serum TREM-1 (OR=1.002, 95%CI: 1.000 — 1.003, P=0.016) were independent risk factors for the prognosis of patients with cirrhotic ascites and infection, and the combination of these two indicators had an AUC of 0.728 in predicting poor prognosis. ConclusionThe level of TREM-1 is closely associated with the severity of infection and prognosis in patients with cirrhotic ascites, and combined measurement of TREM-1 and CRP/PCT can improve the diagnostic accuracy of infection and provide support for prognostic evaluation.
10.Atlantodentoplasty using the anterior retropharyngeal approach for treating irreducible atlantoaxial dislocation with atlantodental bony obstruction: a retrospective study
Jia SHAO ; Yun Peng HAN ; Yan Zheng GAO ; Kun GAO ; Ke Zheng MAO ; Xiu Ru ZHANG
Asian Spine Journal 2025;19(1):54-63
Methods:
The clinical data of 26 patients diagnosed with irreducible atlantoaxial dislocation complicated by atlantodental bony obstruction were analyzed retrospectively. All patients underwent anterior retropharyngeal atlantodentoplasty, followed by posterior occipitocervical fusion. Details including surgical duration and blood loss volume were recorded. Radiographic data such as the anterior atlantodental interval, O–C2 angle, space available for the cord, clivus–canal angle, and cervical medullary angle, and clinical data including the Japanese Orthopedic Association (JOA) score were assessed. The fusion time of the grafted bone and the development of complications were examined.
Results:
In patients undergoing anterior retropharyngeal atlantodentoplasty, the surgical duration and blood loss volume were 120.1±16.4 minutes and 100.6±33.5 mL, respectively. The anterior atlantodental interval decreased significantly after the surgery (p <0.001). The O–C2 angle, space available for the cord, clivus–canal angle, and cervical medullary angle increased significantly after the surgery (p <0.001). The JOA score during the latest follow-up significantly increased compared with that before the surgery (p <0.001). The improvement rate of the JOA score was 80.8%±18.1%. The fusion time of the grafted bone was 3–8 months, with an average of 5.7±1.5 months. In total, 11 patients presented with postoperative dysphagia and three with irritating cough. However, none of them exhibited other major complications.
Conclusions
Anterior retropharyngeal atlantodentoplasty can anatomically reduce the atlantoaxial joint with a satisfactory clinical outcome in patients with irreducible atlantoaxial dislocation with atlantodental bony obstruction.

Result Analysis
Print
Save
E-mail