1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.Evaluation of the performance of the artificial intelligence - enabled snail identification system for recognition of Oncomelania hupensis robertsoni and Tricula
Jihua ZHOU ; Shaowen BAI ; Liang SHI ; Jianfeng ZHANG ; Chunhong DU ; Jing SONG ; Zongya ZHANG ; Jiaqi YAN ; Andong WU ; Yi DONG ; Kun YANG
Chinese Journal of Schistosomiasis Control 2025;37(1):55-60
Objective To evaluate the performance of the artificial intelligence (AI)-enabled snail identification system for recognition of Oncomelania hupensis robertsoni and Tricula in schistosomiasis-endemic areas of Yunnan Province. Methods Fifty O. hupensis robertsoni and 50 Tricula samples were collected from Yongbei Township, Yongsheng County, Lijiang City, a schistosomiasis-endemic area in Yunnan Province in May 2024. A total of 100 snail sample images were captured with smartphones, including front-view images of 25 O. hupensis robertsoni and 25 Tricula samples (upward shell opening) and back-view images of 25 O. hupensis robertsoni and 25 Tricula samples (downward shell opening). Snail samples were identified as O. hupensis robertsoni or Tricula by schistosomiasis control experts with a deputy senior professional title and above according to image quality and morphological characteristics. A standard dataset for snail image classification was created, and served as a gold standard for recognition of snail samples. A total of 100 snail sample images were recognized with the AI-enabled intelligent snail identification system based on a WeChat mini program in smartphones. Schistosomiasis control professionals were randomly sampled from stations of schistosomisis prevention and control and centers for disease control and prevention in 18 schistosomiasis-endemic counties (districts, cities) of Yunnan Province, for artificial identification of 100 snail sample images. All professionals are assigned to two groups according the median years of snail survey experiences, and the effect of years of snail survey experiences on O. hupensis robertsoni sample image recognition was evaluated. A receiver operating characteristic (ROC) curve was plotted, and the sensitivity, specificity, accuracy, Youden’s index and the area under the curve (AUC) of the AI-enabled intelligent snail identification system and artificial identification were calculated for recognition of snail sample images. The snail sample image recognition results of AI-enabled intelligent snail identification system and artificial identification were compared with the gold standard, and the internal consistency of artificial identification results was evaluated with the Cronbach’s coefficient alpha. Results A total of 54 schistosomiasis control professionals were sampled for artificial identification of snail sample image recognition, with a response rate of 100% (54/54), and the accuracy, sensitivity, specificity, Youden’s index, and AUC of artificial identification were 90%, 86%, 94%, 0.80 and 0.90 for recognition of snail sample images, respectively. The overall Cronbach’s coefficient alpha of artificial identification was 0.768 for recognition of snail sample images, and the Cronbach’s coefficient alpha was 0.916 for recognition of O. hupensis robertsoni snail sample images and 0.925 for recognition of Tricula snail sample images. The overall accuracy of artificial identification was 90% for recognition of snail sample images, and there was no significant difference in the accuracy of artificial identification for recognition of O. hupensis robertsoni (86%) and Tricula snail sample images (94%) (χ2 = 1.778, P > 0.05). There was no significant difference in the accuracy of artificial identification for recognition of snail sample images with upward (88%) and downward shell openings (92%) (χ2 = 0.444, P > 0.05), and there was a significant difference in the accuracy of artificial identification for recognition of snail sample images between schistosomiasis control professionals with snail survey experiences of 6 years and less (75%) and more than 6 years (90%) (χ2 = 7.792, P < 0.05). The accuracy, sensitivity, specificity and AUC of the AI-enabled intelligent snail identification system were 88%, 100%, 76% and 0.88 for recognition of O. hupensis robertsoni snail sample images, and there was no significant difference in the accuracy of recognition of O. hupensis robertsoni snail sample images between the AI-enabled intelligent snail identification system and artificial identification (χ2 = 0.204, P > 0.05). In addition, there was no significant difference in the accuracy of artificial identification for recognition of snail sample images with upward (90%) and downward shell openings (86%) (χ2 = 0.379, P > 0.05), and there was a significant difference in the accuracy of artificial identification for recognition of snail sample images between schistosomiasis control professionals with snail survey experiences of 6 years and less and more than 6 years (χ2 = 5.604, Padjusted < 0.025). Conclusions The accuracy of recognition of snail sample images is comparable between the AI-enabled intelligent snail identification system and artificial identification by schistosomiasis control professionals, and the AI-enabled intelligent snail identification system is feasible for recognition of O. hupensis robertsoni and Tricula in Yunnan Province.
3.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7. Optimization and identification of a low density and high purity method for primary hippocampal neuron culture from fetal rats
Peng SU ; Xing-Yi WANG ; Jing-Yan LIANG ; Tian-Qing XIONG ; Jing-Yan LIANG ; Tian-Qing XIONG
Acta Anatomica Sinica 2024;55(1):113-119
Objective To establish a low density, high purity and high stability in vitro culture method of primary hippocampal neurons of fetal rats by co-culturing hippocampal and cortical cells, so as to obtain higher purity and better vitality of primary hippocampal neurons disease. Methods The fetal rat hippocampal tissue was isolated from 16-18 days pregnant SD rats, then cut and digested by 0.125% trypsin. The obtained cell suspension was filtered by 200 mesh cell sieve, and then the obtained cell suspensions were then inoculated into the inner layer and outer ring of the culture plate in a surrounding form. They were co-cultured in DMEM/F12 medium containing 10% horse serum. After 4-6 hours of cell adhesion, the culture medium was changed to maintenance medium (Neurobasal+2% B27+0.5 mmol/L glutamine). Then the cell viability was detected with CCK-8 kit and the purity of hippocampal neurons was detected by immunofluorescent staining. Results Hippocampal neurons grew well and formed crisscross neural networks after 5 days. And it could survive for 3 weeks. The purity of hippocampal neurons was up to 98%. Conclusion The method of co-culturing hippocampal and cortical cells can obtain high-purity, high activity, high survival rate, and high stability primary hippocampal neurons from fetal rats, which can provide certain experimental conditions for the study of hippocampal neuron related diseases in the nervous system and is worthy of promotion and application.
8.The role of glucose metabolism reprogramming and its targeted therapeutic agents in inflammation-related diseases
Yi WEI ; Xiao-man JIANG ; Shi-lin XIA ; Jing XU ; Ya LI ; Ran DENG ; Yan WANG ; Hong WU
Acta Pharmaceutica Sinica 2024;59(3):511-519
Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases.
9.Anti-SARS-CoV-2 activity of small molecule inhibitors of cathepsin L
Wen-wen ZHOU ; Bao-qing YOU ; Yi-fan ZHENG ; Shu-yi SI ; Yan LI ; Jing ZHANG
Acta Pharmaceutica Sinica 2024;59(3):600-607
The coronavirus disease 2019 (COVID-19) is an acute infectious disease caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to serious worldwide economic burden. Due to the continuous emergence of variants, vaccines and monoclonal antibodies are only partial effective against infections caused by distinct strains of SARS-CoV-2. Therefore, it is still of great importance to call for the development of broad-spectrum and effective small molecule drugs to combat both current and future outbreaks triggered by SARS-CoV-2. Cathepsin L (CatL) cleaves the spike glycoprotein (S) of SARS-CoV-2, playing an indispensable role in enhancing virus entry into host cells. Therefore CatL is one of the ideal targets for the development of pan-coronavirus inhibitor-based drugs. In this study, a CatL enzyme inhibitor screening model was established based on fluorescein labeled substrate. Two CatL inhibitors IMB 6290 and IMB 8014 with low cytotoxicity were obtained through high-throughput screening, the half inhibition concentrations (IC50) of which were 11.53 ± 0.68 and 1.56 ± 1.10 μmol·L-1, respectively. SDS-PAGE and cell-cell fusion experiments confirmed that the compounds inhibited the hydrolysis of S protein by CatL in a concentration-dependent manner. Surface plasmon resonance (SPR) detection showed that both compounds exhibited moderate binding affinity with CatL. Molecular docking revealed the binding mode between the compound and the CatL active pocket. The pseudovirus experiment further confirmed the inhibitory effects of IMB 8014 on the S protein mediated entry process.
10.The relationship between activities of daily living and mental health in community elderly people and the mediating role of sleep quality
Heng-Yi ZHOU ; Jing LI ; Dan-Hua DAI ; Yang LI ; Bin ZHANG ; Rong DU ; Rui-Long WU ; Jia-Yan JIANG ; Yuan-Man WEI ; Jing-Rong GAO ; Qi ZHAO
Fudan University Journal of Medical Sciences 2024;51(2):143-150
Objective To explore the relationship and internal path between activities of daily living(ADL),sleep quality and mental health of community elderly people in Shanghai.Methods A questionnaire survey was conducted among community residents aged 60 years and older seeing doctors in community health care center of five streets in Shanghai during Sept to Dec,2021 using convenience sampling.Activities of Daily Living(ADL),Pittsburgh Sleep Quality Index(PSQI)and 10-item Kessler Psychological Distress Scale(K10)were adopted in the survey.Single factor analysis,correlation analysis and multiple linear regression were used to analyze the data.The effect relationship between the variables was tested using Bootstrap's mediated effects test.Results A total of 1 864 participants were included in the study.The average score was 15.53±4.47 for ADL,5.60±3.71 for PSQI and 15.50±6.28 for K10.The rate of ADL impairment,poor sleep quality,poor and very poor mental health of the elderly were 23.6%,27.3%,11.9%and 4.9%,respectively.ADL and sleep quality were all positively correlated with mental health(r=0.321,P<0.001;r=0.466,P<0.001);ADL was positively correlated with sleep quality(r=0.294,P<0.001).Multiple linear results of factors influencing mental health showed that ADL(β= 0.457,95%CI:0.341-0.573),sleep quality(β =0.667,95%CI:0.598-0.737)and mental health were positively correlated(P<0.001).Sleep quality partially mediated the relationship between ADL and mental health(95%CI:0.078-0.124)with an effect size of 33.0%.Conclusion Sleep quality is a mediator between ADL and mental health among community elderly people.Improving ADL and sleep quality may improve mental health in the population.

Result Analysis
Print
Save
E-mail