1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Research progress in targeted therapies of chronic lymphocytic leukemia
Yanling DING ; Jie LI ; Jun YUAN ; Yan LI
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(2):264-270
Chronic lymphocytic leukemia(CLL)is one of small B-cell lymphomas and leukemias,characterized as a clonal disease of mature B cells.The disease is remarkably heterogeneous,with the majority of patients having an indolent course,yet they are currently incurable.Abnormal signaling pathways are indispensable in the pathogenesis of CLL.In CLL,the common abnormalities of signaling pathways include B-cell receptor(BCR)signaling,apoptosis,nuclear factor kappa B(NF-κB)signaling and Notch signaling.According to the target in signaling pathways,a series of targeted drugs,such as Bruton's tyrosine kinase(BTK)inhibitors(ibrutinib,zanubrutinib),phosphorylate phosphoinositide 3-kinase(PI3K)inhibitor(duvelisib)and B-cell leukemia/lymphoma 2(BCL2)inhibitor(venetoclax),which have significantly changed the prognosis of patients in clinic.Other targeted drugs,such as fenebrutinib,nemtabrutinib and umbralisib,as well as chimeric antigen receptor T-cell(CAR-T)therapy developed in the field of immuno-oncology and T cell engineering,are currently under trial,with more personalized treatment modalities being explored,which may become potential drug targets in the future.In this paper,relevant literature of CLL was reviewed,and recent research progress in molecular pathogenesis and targeted therapies of chronic lymphocytic leukemia was reviewed.
7.The developments and future of drug detection technology for environmental samples
Yan DING ; Peipei LIU ; Wu WEN ; Jie CHEN ; Taijun HANG
Chinese Journal of Forensic Medicine 2024;39(1):14-22
In recent years,the international drug control situation has become increasingly serious.According to the statistical data of the year 2021 from UNODC,in the past decade,the trafficking volume of traditional drug(such as methamphetamine,cannabis and cocaine)has continued to rise,new psychoactive substances(NPS)have emerged one after another,the drugs as well as their precursors and metabolites have become a new group of pollutants.They widely exist in environmental media such as water,air,sludge and soil,due to the manufacture and abuse of drugs,which endangers human and animal safety.Drug detection data from environmental samples can reflect the local drug use situation objectively,real-time,accurately and effectively,which is helpful to grasp the spatial distribution and time changes,monitor the development trends of drug abuse,assess the trend of drug abuse reasonably,and assist in combating related illegal and criminal activities through comprehensive data analysis.At present,sewage monitoring has become an important means of drug monitoring in countries around the world.Sewage testing can assess drug consumption in a place reasonably,and sewage network traceability technology can reduce the scope of regional investigation of drug manufacturing dens effectively,so as to combat accurately.Drug detection in the atmosphere,sludge and soil has been carried out in some foreign countries,but it has not been used as a long-term monitoring means.Long-term monitoring of drugs from the environment in a variety of ways not only helps to effectively update the drug situation in the region,but also to better understand local trends in drug use and identify new drugs of abuse.It will provide data support for more accurate monitoring and combating drug crimes in the future.This paper reviews the methods for detecting drugs and other related compounds in different environmental matrices including sewage,atmosphere and sludge in China and other countries,including the study on the sources and forms of related compounds in different environments,the preparation of different matrix samples and the quantitative analysis of drugs from environment,as well as the existing problems and shortcomings of various detection methods.Finally,the drug detection technology and comprehensive monitoring system in the environment are prospected.
8.Efficacy and safety of recombinant human anti-SARS-CoV-2 monoclonal antibody injection(F61 injection)in the treatment of patients with COVID-19 combined with renal damage:a randomized controlled exploratory clinical study
Ding-Hua CHEN ; Chao-Fan LI ; Yue NIU ; Li ZHANG ; Yong WANG ; Zhe FENG ; Han-Yu ZHU ; Jian-Hui ZHOU ; Zhe-Yi DONG ; Shu-Wei DUAN ; Hong WANG ; Meng-Jie HUANG ; Yuan-Da WANG ; Shuo-Yuan CONG ; Sai PAN ; Jing ZHOU ; Xue-Feng SUN ; Guang-Yan CAI ; Ping LI ; Xiang-Mei CHEN
Chinese Journal of Infection Control 2024;23(3):257-264
Objective To explore the efficacy and safety of recombinant human anti-severe acute respiratory syn-drome coronavirus 2(anti-SARS-CoV-2)monoclonal antibody injection(F61 injection)in the treatment of patients with coronavirus disease 2019(COVID-19)combined with renal damage.Methods Patients with COVID-19 and renal damage who visited the PLA General Hospital from January to February 2023 were selected.Subjects were randomly divided into two groups.Control group was treated with conventional anti-COVID-19 therapy,while trial group was treated with conventional anti-COVID-19 therapy combined with F61 injection.A 15-day follow-up was conducted after drug administration.Clinical symptoms,laboratory tests,electrocardiogram,and chest CT of pa-tients were performed to analyze the efficacy and safety of F61 injection.Results Twelve subjects(7 in trial group and 5 in control group)were included in study.Neither group had any clinical progression or death cases.The ave-rage time for negative conversion of nucleic acid of SARS-CoV-2 in control group and trial group were 3.2 days and 1.57 days(P=0.046),respectively.The scores of COVID-19 related target symptom in the trial group on the 3rd and 5th day after medication were both lower than those of the control group(both P<0.05).According to the clinical staging and World Health Organization 10-point graded disease progression scale,both groups of subjects improved but didn't show statistical differences(P>0.05).For safety,trial group didn't present any infusion-re-lated adverse event.Subjects in both groups demonstrated varying degrees of elevated blood glucose,elevated urine glucose,elevated urobilinogen,positive urine casts,and cardiac arrhythmia,but the differences were not statistica-lly significant(all P>0.05).Conclusion F61 injection has initially demonstrated safety and clinical benefit in trea-ting patients with COVID-19 combined with renal damage.As the domestically produced drug,it has good clinical accessibility and may provide more options for clinical practice.
9.Mechanism by which interleukin-1beta regulates the expression of Semaphorin 3A to induce intervertebral disc degeneration
Jie HUANG ; Qiang JIANG ; Jiaheng HAN ; Jiang LIU ; Yan ZHANG ; Zhencao LU ; Yu DING
Chinese Journal of Tissue Engineering Research 2024;28(23):3680-3685
BACKGROUND:Semaphone 3A(Sema3A)is an important neurovascular growth inhibitor.It is not clear how Sema3A is involved in the pathogenesis of discogenic low back pain.Exploring the potential mechanism of Sema3A in intervertebral disc degeneration can provide a new target and theoretical basis for the prevention and treatment of discogenic low back pain. OBJECTIVE:To explore the mechanism of interleukin-1β inhibiting the expression of Sema3A by activating the nuclear factor-κB signaling pathway to induce intervertebral disc degeneration in rats. METHODS:RT-qPCR was used to detect the expression of Sema3A mRNA in normal and degenerative human nucleus pulposus tissues.Nucleus pulposus cells of Sprague-Dawley rats were isolated,cultured,and passaged to the 3rd generation.Then,passage 3 cells were divided into three groups:the blank control group was routinely cultured for 48 hours,the degeneration group was intervened with 10 ng/mL interleukin 1β for 48 hours,and the degeneration+inhibitor group was treated by 5 μmol/L nuclear factor-κB signaling pathway-specific inhibitor BAY11-7082 for 1 hour,followed by interleukin-1β for 48 hours.At the end of the intervention,cell viability was detected by cell counting kit-8,cell apoptosis was detected by Annexin V/FITC staining,mRNA expression of cellular matrix,vascular and neural markers and Sema3A was detected by RT-qPCR,and protein expression of marker proteins,p65 and p-p65 was detected by western blot. RESULTS AND CONCLUSION:RT-qPCR assay showed that the expression of Sema3A mRNA was lower in degenerative human nucleus pulposus tissue than in normal human nucleus pulposus tissue(P<0.05).Compared with the blank control group,the nucleus pulposus cell viability decreased and the apoptotic rate increased in the degeneration group(P<0.05);compared with the degeneration group,the nucleus pulposus cell viability increased and the apoptotic rate decreased in the degeneration + inhibitor group(P<0.05).Compared with the blank control group,mRNA expression of type Ⅱ collagen,polyproteoglycan,and Sema3A was decreased in the degeneration group(P<0.05),while mRNA expression of CD31 and neurofilament 200 was increased(P<0.05).Compared with the degeneration group,mRNA expression of type Ⅱ collagen,polyproteoglycan,and Sema3A was elevated in the degeneration+inhibitor group(P<0.05)and mRNA expression of CD31 and neurofilament 200 decreased(P<0.05).Compared with the blank control group,the protein expression of type Ⅱ collagen,polyproteoglycan,and Sema3A was decreased in the degeneration group(P<0.05),and the protein expression of CD31,neurofilament protein 200,p65,and p-p65 was elevated(P<0.05);compared with the degeneration group,the protein expression of type Ⅱ collagen,polyproteoglycan,and Sema3A was elevated in the degeneration+inhibitor group(P<0.05),and protein expression of CD31,neurofilament 200,p65,and p-p65 was decreased(P<0.05).To conclude,interleukin-1β does inhibit the expression of Sema3A by activating the nuclear factor-κB signaling pathway,which can also increase the degradation of extracellular matrix,promote the innervation and angiogenesis in degenerative intervertebral disc,and may be one of potential factors that contribute to intervertebral disc degeneration and discogenic low back pain.
10.Gasdermins, The Executor of Pyroptosis
Progress in Biochemistry and Biophysics 2024;51(10):2311-2327
Pyroptosis is a form of lytic programmed cell death executed by a family of pore-forming proteins named gasdermin (GSDM). Pyroptosis plays crucial roles in host defense against pathogen infection and eliminating abnormal and harmful cells, while excessive pyroptosis causes inflammatory diseases including cytokine storm and septic shock. Mammalian GSDMs, except for pejvakin (PJVK), adopt an autoinhibited two-domain architecture, in which the N-terminal cytotoxic domain (GSDM-N) is restrained in an inactive state by the intramolecular interaction with the C-terminal inhibitory domain (GSDM-C). These two-domain proteins are activated by upstream protease cleavage within the interdomain linkers. The unleashed GSDM-N binds to acidic phospholipids in the cytoplasmic leaf of plasma membranes and undergoes dramatic conformational changes and oligomerization, then assembling into transmembrane pores for pyroptosis induction. GSDM pores lead to membrane rupture, cell swelling, and cytosol release, thereby mobilizing proinflammatory responses. GSDMs are evolutionarily conserved and have been discovered across all kingdoms of life, including bacteria, fungi, invertebrates such as cnidarians and mollusks, and all vertebrates. Proteolytic cleavage to liberate the pore-forming activity of GSDM-N appears to be a universal mechanism for most GSDMs activation, despite low sequence homology among the GSDMs from diverse species. However, recent studies discover that there exist noncanonical GSDMs lack of functional C-terminal inhibitory domains in some lower eukaryotic species. These noncanonical GSDMs are activated by unprecedent mechanisms independent of proteolytic cleavage. TrichoGSDM, present in the basal metazoan Trichoplax adhaerens, is a pore-forming domain-only protein and exists as a disulfides-linked autoinhibited dimer. Reduction of the disulfides by the conserved cytoplasmic antioxidant system, including glutathione (GSH) and thioredoxin (Trx), generates pore-forming active monomers capable of inducing lytic cell death. In filamentous fungus Neurospora crassa, polymorphic regulator of cell death-1 (rcd-1) encodes two GSDM-like proteins RCD-1-1 and RCD-1-2 in incompatible haplostrains, which trigger pyroptosis-like cell death in nonself discrimination (allorecognition) upon encountering during somatic cell fusion. RCD-1-1 and RCD-1-2 are both monomers and structurally similar to mammalian GSDM-N domains, lacking autoinhibitory fragments. They alone could bind acidic phospholipids, and associate with cell membrane in a resting state. Coexistence of RCD-1-1 and RCD-1-2 leads to formation of RCD-1-1/RCD-1-2 heterodimers through molecular mating, which further oligomerize into membrane-inserted pores, causing rapid lytic cell death. These findings reveal mechanistic diversities in GSDM activation and indicate versatile functions of GSDMs. Due to the highly proinflammatory nature of pyroptosis, the pore-forming activities of GSDMs have been illustrated to be precisely regulated at multiple levels. GSDMD transcription and expression is characterized to be induced by interferon regulatory factors 2 (IRF2). mRNA alternative splicing of GSDMB generates various isoforms, some of which exhibit potent pore-forming activity whereas the others bear none. Additionally, different types of post-translational modifications have been identified on GSDMs, playing distinct regulatory roles. For examples, itaconation of GSDMD, succinylation of GSDMD and GSDME, and phosphorylation of GSDMA, GSDMD and GSDME, negatively regulate GSDM pore formation, thereby inhibiting pyroptosis. Conversely, palmitoylation of GSDMD and GSDME, and ubiquitination of GSDMD promote the pore-forming activities and pyroptosis. Moreover, some proteases can cleave within the GSDM-N domains to block their pore-forming activities. On the other hand, bacterial pathogens evolve specific effectors to hijack host pyroptotic defense pathway through targeting upstream caspases, GSDMs or plasma membrane phospholipids. Given the crucial roles of GSDMD in immune defense and pathological inflammation, a few small-molecule inhibitors have been found to directly inhibit GSDMD activity. Since the identification of GSDMs as the executioners of pyroptosis, the GSDM family has attracted broad attention in immunology researches. Significant progress has been made to greatly advance our knowledge about how GSDMs action, and what are the immunological functions of pyroptosis. Investigations of GSDM-targeting therapies are emerging as a promising translational direction. In this paper, we review recent progress in the field of pyroptosis researches, with focus on various molecular mechanisms underlying GSDMs activation and regulation. The biological implication and future direction of pyroptosis research are also discussed.

Result Analysis
Print
Save
E-mail