1.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.
2.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.
3.BMI1/NF-κB axis remodeling TAMs phenotype promotes the malignant biological behavior of oral squa-mous cell carcinoma
Yahui LI ; Huan LI ; Yaodong HE ; Rong LIU ; Junhong HUANG ; Yating HU ; Jing LI ; Yanbing YAO ; Xin-Jie YANG ; Jianhua WEI
Journal of Practical Stomatology 2024;40(2):233-240
Objective:To investigate the impact of BMI1 expression in OSCC on the recruitment and differentiation of tumor-associat-ed macrophages(TAMs).Methods:BMI1 expression in 519 cases of OSCC tissues and 44 normal controls was analyzed using online datasets of GEPIA 2.0,and validated in 3 cases of OSCC samples and controls by qRT-PCR and western blotting.The function of BMI1/NF-κB axis during OSCC carcinogenesis was investigated by CCK8 assays,wound healing test and transwell assays.Macrophage phenotypes and recruitment were determined using qRT-PCR and western blotting following coculture of the cells with human monocyte cells(THP-1)by OSCC conditioned medium.Moreover,a cell line-derived xenograft(CDX)model was used to detect the effect of BMI1 on tumor growth in vivo.Results:Compared with the normal tissues and cells,the expression level of BMI1 in OSCC tissues and cells was significantly upregulated.BMI1 knockdown impaired the proliferation,migration,and invasion abilities of OSCC cell lines in NF-κB-dependent manner.Furthermore,OSCC cells with high BMI1 expression inhibited the migration of THP-1 cells,promoted M2-like macrophage polarization through NF-κB pathway in vitro.Xenograft experiments further confirmed the inhibitory effect of BMI1 knockdown on the tumorigenesis ability of OSCC cells in vivo.Conclusion:BMI1 promotes M2-like polarization by regulating NF-κB and may be used as a potential therapeutic target for antitumor immunity.
4.A real-world study of first-line albumin-bound paclitaxel in the treatment of advanced pancreatic cancer in China
Juan DU ; Xin QIU ; Jiayao NI ; Qiaoli WANG ; Fan TONG ; Huizi SHA ; Yahui ZHU ; Liang QI ; Wei CAI ; Chao GAO ; Xiaowei WEI ; Minbin CHEN ; Zhuyin QIAN ; Maohuai CAI ; Min TAO ; Cailian WANG ; Guocan ZHENG ; Hua JIANG ; Anwei DAI ; Jun WU ; Minghong ZHAO ; Xiaoqin LI ; Bin LU ; Chunbin WANG ; Baorui LIU
Chinese Journal of Oncology 2024;46(11):1038-1048
Objective:To observe and evaluate the clinical efficacy and safety of albumin-bound paclitaxel as first-line treatment for patients with advanced pancreatic cancer in China, and to explore the prognosis-related molecules in pancreatic cancer based on next-generation sequencing (NGS) of tumor tissues.Methods:From December 2018 to December 2020, patients with locally advanced or metastatic pancreatic cancer were recruited to accept albumin-bound paclitaxel as first-line treatment in the oncology departments of 24 hospitals in East China. The primary endpoints were overall survival (OS) and treatment related adverse events, and the secondary endpoint was progression-free survival (PFS). Adverse effects were graded using Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). NGS sequencing on the primary or metastatic tissue samples of pancreatic cancer obtained through surgical resection or biopsy was performed.Results:This study recruited 229 patients, including 70 patients with locally advanced pancreatic cancer (LAPC) and 159 patients with metastatic pancreatic cancer (mPC). The disease control rate was 79.9% and the objective response rate is 36.3%.The common adverse effects during treatment were anaemia (159 cases), leucopenia (170 cases), neutropenia (169 cases), increased aminotransferases (110 cases), and thrombocytopenia (95 cases), and the incidence of grade 3-4 neutropenia is 12.2% (28/229). The median follow-up time was 21.2 months (95% CI: 18.5-23.1 months). The median PFS (mPFS) was 5.3 months (95% CI: 4.37-4.07 months) and the median OS (mOS) was 11.2 months (95% CI: 9.5-12.9 months). The mPFS of patients with LAPC was 7.4 months (95% CI: 6.6-11.2 months), and their mOS was 15.5 months (95% CI: 12.6-NA months). The mPFS of patients with mPC was 3.9 months (95% CI: 3.4-5.1 months), and their mOS was 9.3 months (95% CI: 8.0-10.8 months). Multivariate Cox regression analysis showed that clinical stage ( HR=1.47, 95% CI: 1.06-2.04), primary tumor site ( HR=0.64, 95% CI: 0.48-0.86), Eastern Cooperative Oncology Group Performance Status (ECOG PS) score ( HR=2.66, 95% CI: 1.53-4.65), and whether to combine radiotherapy ( HR=0.65, 95% CI: 0.42-1.00) were independent influencing factors for the PFS of these patients. The primary tumor site ( HR=0.68, 95% CI: 0.48-0.95), ECOG score ( HR=5.82, 95% CI: 3.14-10.82), and whether to combine radiotherapy ( HR=0.58, 95% CI: 0.35-0.96) were independent influencing factors of the OS of these patients. The most frequent gene mutations in these advanced stage pancreatic patients were KRAS (89.66%), TP53 (77.01%), CDKN2A (32.18%), and SMAD4 (21.84%) by NGS of tumor tissues from 87 pancreatic cancer patients with sufficient specimens. Further analysis revealed that mutations in CDKN2B, PTEN, FGF6, and RBBP8 genes were significantly associated with an increased risk of death ( P<0.05). Conclusion:Albumin-bound paclitaxel as first-line treatment demonstrated feasible anti-tumor efficacy and manageable safety for patients with advanced pancreatic cancer in China.
5.Causal relationship between circulating inflammatory factors and sensorineural hearing loss:A two-way Mendelian randomization study
Zhaofeng QIU ; Wei CHANG ; Jianzhou GUO ; Yu LIU ; Yahui ZHAO
Chinese Archives of Otolaryngology-Head and Neck Surgery 2024;31(11):717-721
OBJECTIVE To explore the causal relationship of circulating cytokines and sensorineural deafness by Mendelian randomization.METHODS Large-scale genome-wide association studies(GWAS)data sets based on UK Biobank were used to identify single nucleotide polymorphisms(SNP)associated with exposure and outcome.The SNP(F>10)significantly associated with exposure data(P<5e-6)and strongly associated with exposure in the F statistic was selected as the instrumental variable for a two-sample Mendelian randomization analysis.The causal effect was estimated using MR-Egger,regression and inverse variance weighting(IVW).Sensitivity analysis was performed to assess the robustness of the results.RESULTS This study confirmed that VEGF(OR=1.04,95%CI:1.01-1.07,P=0.00),SDF-1α(OR=1.10,95%CI:1.02-1.18,P=0.01)and IL-13(OR=1.04,95%CI:1.01-1.06,P=0.01),IL-10(OR=1.06,95%CI:1.02-1.11,P=0.01),IL-7(OR=1.05,95%CI:1.01-1.08,P=0.00)increased the risk of sensorineural deafness.The backward analysis did not find that sensorineural deafness significantly affected the levels of these cytokines.No significant heterogeneity or horizontal pleiotropy was observed among the instrumental variables.CONCLUSION This study reveals a positive correlation between elevated levels of VEGF,SDF-1α,IL-13,IL-10,and IL-7 with sensorineural hearing loss,providing novel targets for further development of biomarkers for the prediction,treatment,and prevention of sensorineural hearing loss.
6.A real-world study of first-line albumin-bound paclitaxel in the treatment of advanced pancreatic cancer in China
Juan DU ; Xin QIU ; Jiayao NI ; Qiaoli WANG ; Fan TONG ; Huizi SHA ; Yahui ZHU ; Liang QI ; Wei CAI ; Chao GAO ; Xiaowei WEI ; Minbin CHEN ; Zhuyin QIAN ; Maohuai CAI ; Min TAO ; Cailian WANG ; Guocan ZHENG ; Hua JIANG ; Anwei DAI ; Jun WU ; Minghong ZHAO ; Xiaoqin LI ; Bin LU ; Chunbin WANG ; Baorui LIU
Chinese Journal of Oncology 2024;46(11):1038-1048
Objective:To observe and evaluate the clinical efficacy and safety of albumin-bound paclitaxel as first-line treatment for patients with advanced pancreatic cancer in China, and to explore the prognosis-related molecules in pancreatic cancer based on next-generation sequencing (NGS) of tumor tissues.Methods:From December 2018 to December 2020, patients with locally advanced or metastatic pancreatic cancer were recruited to accept albumin-bound paclitaxel as first-line treatment in the oncology departments of 24 hospitals in East China. The primary endpoints were overall survival (OS) and treatment related adverse events, and the secondary endpoint was progression-free survival (PFS). Adverse effects were graded using Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). NGS sequencing on the primary or metastatic tissue samples of pancreatic cancer obtained through surgical resection or biopsy was performed.Results:This study recruited 229 patients, including 70 patients with locally advanced pancreatic cancer (LAPC) and 159 patients with metastatic pancreatic cancer (mPC). The disease control rate was 79.9% and the objective response rate is 36.3%.The common adverse effects during treatment were anaemia (159 cases), leucopenia (170 cases), neutropenia (169 cases), increased aminotransferases (110 cases), and thrombocytopenia (95 cases), and the incidence of grade 3-4 neutropenia is 12.2% (28/229). The median follow-up time was 21.2 months (95% CI: 18.5-23.1 months). The median PFS (mPFS) was 5.3 months (95% CI: 4.37-4.07 months) and the median OS (mOS) was 11.2 months (95% CI: 9.5-12.9 months). The mPFS of patients with LAPC was 7.4 months (95% CI: 6.6-11.2 months), and their mOS was 15.5 months (95% CI: 12.6-NA months). The mPFS of patients with mPC was 3.9 months (95% CI: 3.4-5.1 months), and their mOS was 9.3 months (95% CI: 8.0-10.8 months). Multivariate Cox regression analysis showed that clinical stage ( HR=1.47, 95% CI: 1.06-2.04), primary tumor site ( HR=0.64, 95% CI: 0.48-0.86), Eastern Cooperative Oncology Group Performance Status (ECOG PS) score ( HR=2.66, 95% CI: 1.53-4.65), and whether to combine radiotherapy ( HR=0.65, 95% CI: 0.42-1.00) were independent influencing factors for the PFS of these patients. The primary tumor site ( HR=0.68, 95% CI: 0.48-0.95), ECOG score ( HR=5.82, 95% CI: 3.14-10.82), and whether to combine radiotherapy ( HR=0.58, 95% CI: 0.35-0.96) were independent influencing factors of the OS of these patients. The most frequent gene mutations in these advanced stage pancreatic patients were KRAS (89.66%), TP53 (77.01%), CDKN2A (32.18%), and SMAD4 (21.84%) by NGS of tumor tissues from 87 pancreatic cancer patients with sufficient specimens. Further analysis revealed that mutations in CDKN2B, PTEN, FGF6, and RBBP8 genes were significantly associated with an increased risk of death ( P<0.05). Conclusion:Albumin-bound paclitaxel as first-line treatment demonstrated feasible anti-tumor efficacy and manageable safety for patients with advanced pancreatic cancer in China.
7.Effect of Bazi Bushen Capsules on Delaying Aging Process of Naturally Aging Mice Based on Immune-inflammation-aging
Yahui SONG ; Kun MA ; Yaping ZHANG ; Dandong WANG ; Xinjing MAO ; Shaolan ZHANG ; Cong WEI
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(9):146-155
ObjectiveTo study the effect of Bazi Bushen capsules on delaying the aging process of naturally aging mice and its mechanism. MethodThe mice were randomly divided into four groups according to their body weight, namely, aging group, low-dose Bazi Bushen capsules group (1 g·kg-1), high-dose Bazi Bushen capsules group (2 g·kg-1), and rapamycin group (0.002 g·kg-1). The debilitating signs were detected by behavioral tests and the weakness index was measured. The percentages of spleen T and B lymphocytes, effector T cells (TE), memory T cells (TM), naive T cells (TN), helper T cells (Th), cytotoxic T cells (Tc) ,Th1 cells, Th2 cells, and regulatory T cells (Treg) were determined by flow cytometry. Cell proliferation and the cell counting kit-8 (CCK-8) assay was used to detect the proliferation of lymphocytes in mice. The hematoxylin-eosin (HE) staining was used to observe the histopathological changes in the mouse spleen. The expression of cyclin-dependent kinase inhibitor 2A (p16) and cyclin-dependent kinase inhibitor 1A (p21) was detected by immunohistochemistry (IHC). The mRNA expression of senescence-related proteins p16 and p21 was determined by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and the inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-1β, IL-2, IL-4, IL-10, and IL-12 p70, in peripheral blood of mice were detected by Luminex. ResultAs compared with the aging group, mice in the Bazi Bushen capsules and rapamycin groups showed significantly improved debilitating signs and reduced weakness index scores (P<0.05, P<0.01), increased proportions of T cells, TN cells, Tc cells, Th2 cells, and Treg cells in the spleen, decreased proportions of TE cells, TM cells, Th cells, Th1 cells (P<0.05, P<0.01), and increased proliferation of splenic lymphocytes (P<0.05, P<0.01). In the Bazi Bushen capsules and rapamycin groups, clear structure of the red and white marrow marginal zone was observed in the spleen of mice, the area of the white marrow was increased, and the area of the red marrow was correspondingly decreased. The protein and mRNA expression of aging-related proteins p16 and p21 in the spleen was decreased (P<0.01), the levels of serum pro-inflammatory cytokines IL-1β, IL-2, IL-12 p70, IFN-γ, and TNF-α levels were decreased, and the levels of IL-4 and IL-10 were increased (P<0.05, P<0.01) in the Bazi Bushen capsules and rapamycin groups as compared with the aging group. ConclusionBazi Bushen capsules have the effect of regulating the debilitating signs of natural aging mice, regulating the immune homeostasis and inflammation level of the body, and reducing cell aging.
8.Mechanisms of copper transporter 1 gene in regulating radiation induced intestinal injury
Yixian WANG ; Li LIU ; Wei MO ; Wei ZHU ; Yahui FENG ; Yang JIAO ; Jianping CAO
Chinese Journal of Radiological Medicine and Protection 2023;43(6):401-408
Objective:To investigate the effects and mechanisms of copper transporter 1 (CTR1) in radiation induced intestinal injury in vitro. Methods:Human small intestinal epithelial cells (HIEC) were irradiated with 2, 4, 6, 8 Gy of X-rays and rat intestinal epithelial cells (IEC-6) were irradiated with 5, 10, 15, 20 Gy of X-rays. At 2, 4, 8, 24, and 48 h after irradiation, the expression of CTR1 was detected by Western blot assay. In some experiments, HIEC and IEC-6 cells were transfected with CTR1 shRNA and then exposed to X-rays. Copper levels were detected by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The radiosensitivity of cells was verified by colonogenic assay, the cellular reactive oxygen species (ROS) level and DNA damage were detected to further explore the related mechanism. In addition, Western blot was applied to detect the expressions of antioxidants and cuproptosis associated proteins in enterocytes after silencing CTR1 or irradiation.Results:The expression of CTR1 was increased by X-ray irradiation in a dose-dependent manner ( t=3.53, 3.45, 6.37, 11.11, 11.13, P<0.05). CTR1 expression was successfully diminished by CTR1 shRNA adenovirus vectors. According to the survival curves, the enhancement ratios of the radiosensitivity of HIEC and IEC-6 cells with CTR1 knocking-down were 1.146 and 1.201, respectively. Radiation-induced copper accumulation was alleviated after CTR1 silencing in IEC-6 cells ( t=3.10, P<0.05). At 0.5 h after irradiation, the ROS production in the CTR1 knockdown group was significantly lower than that in the control group ( t=5.23, 2.96, P<0.05). At 1 h after irradiation, the protein expression of γ-H2AX in the CTR1 knockdown group was obviously lower than that in the control group ( t=7.50, 4.29, P<0.05). The expressions of Nrf2 and HO-1 were increased after irradiation, which could be further increased after CTR1 silencing. In addition, cuproptosis associated protein DLAT, LIAS and FDX1 were reduced post-irradiation, which were recovered after CTR1 silencing. Conclusions:The radioresistance of HIEC and IEC-6 cells was enhanced after CTR1 silencing, possibly through the intracellular ROS and cuproptosis pathway.
9.Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis.
Yang LIU ; Yahui DONG ; Wei SHEN ; Jiahui DU ; Quanwei SUN ; Ye YANG ; Dengke YIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):263-278
Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Platycodon
;
Colon/pathology*
;
Cytokines
;
Anti-Inflammatory Agents/therapeutic use*
;
Polysaccharides/therapeutic use*
;
Dextran Sulfate
;
Disease Models, Animal
;
Colitis/chemically induced*
;
Mice, Inbred C57BL
10.Controlling antifungal activity with light: Optical regulation of fungal ergosterol biosynthetic pathway with photo-responsive CYP51 inhibitors.
Zhuang LI ; Na LIU ; Wanzhen YANG ; Jie TU ; Yahui HUANG ; Wei WANG ; Chunquan SHENG
Acta Pharmaceutica Sinica B 2023;13(7):3080-3092
Invasive fungal infections (IFIs) have been associated with high mortality, highlighting the urgent need for developing novel antifungal strategies. Herein the first light-responsive antifungal agents were designed by optical control of fungal ergosterol biosynthesis pathway with photocaged triazole lanosterol 14α-demethylase (CYP51) inhibitors. The photocaged triazoles completely shielded the CYP51 inhibition. The content of ergosterol in fungi before photoactivation and after photoactivation was 4.4% and 83.7%, respectively. Importantly, the shielded antifungal activity (MIC80 ≥ 64 μg/mL) could be efficiently recovered (MIC80 = 0.5-8 μg/mL) by light irradiation. The new chemical tools enable optical control of fungal growth arrest, morphological conversion and biofilm formation. The ability for high-precision antifungal treatment was validated by in vivo models. The light-activated compound A1 was comparable to fluconazole in prolonging survival in Galleria mellonella larvae with a median survival of 14 days and reducing fungal burden in the mouse skin infection model. Overall, this study paves the way for precise regulation of antifungal therapy with improved efficacy and safety.

Result Analysis
Print
Save
E-mail