1.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
		                        		
		                        			 Background:
		                        			Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency. 
		                        		
		                        			Results:
		                        			In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7. 
		                        		
		                        			Conclusions
		                        			This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS. 
		                        		
		                        		
		                        		
		                        	
2.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
		                        		
		                        			 Background:
		                        			Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency. 
		                        		
		                        			Results:
		                        			In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7. 
		                        		
		                        			Conclusions
		                        			This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS. 
		                        		
		                        		
		                        		
		                        	
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
		                        		
		                        			 Background:
		                        			Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency. 
		                        		
		                        			Results:
		                        			In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7. 
		                        		
		                        			Conclusions
		                        			This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS. 
		                        		
		                        		
		                        		
		                        	
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
		                        		
		                        			 Background:
		                        			Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency. 
		                        		
		                        			Results:
		                        			In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7. 
		                        		
		                        			Conclusions
		                        			This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS. 
		                        		
		                        		
		                        		
		                        	
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
		                        		
		                        			 Background:
		                        			Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency. 
		                        		
		                        			Results:
		                        			In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7. 
		                        		
		                        			Conclusions
		                        			This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS. 
		                        		
		                        		
		                        		
		                        	
6. Ligustilide delays senescence of auditory cortex in mice by inhibiting ferritinophagy
Ying-Dong ZHOU ; Meng-Xian ZHANG ; Qing-Ling WANG ; Hao-Ran KANG ; Zhi-Cheng ZHANG ; Xiang-Dong GUO ; Qing-Lin WANG ; Ya-Min LIU
Chinese Pharmacological Bulletin 2024;40(3):455-461
		                        		
		                        			
		                        			 Aim To investigate the mechanism of ligu aged 2 months of the same strain were used as the constilide (LIG) in delaying the senescence of auditory trol (Ctrl) group. Auditory brainstem response test was cortex and treating central presbycusis. Methods used to detect the auditory threshold of mice before and Forty C57BL/6J mice aged 13 months were randomly di after treatment. Levels of serum MDA and activity of vided into ligustilide low-dose(L-LIG) group, ligustil serum SOD were detected to display the level of oxidative ide medium-dose (M-LIG) group, ligustilide high-dose stress. The pathological changes of auditory cortex were (H-LIG) group and aging (Age) group, and 10 mice observed by HE staining. Ferroptosis was observed by 
		                        		
		                        		
		                        		
		                        	
7.Survey on the current status of Helicobacter pylori infection and related risk factors in Haikou city
Xiao-Dong ZHANG ; Da-Ya ZHANG ; Shi-Ju CHEN ; Run-Xiang CHEN ; Yan ZHOU ; Ling WEI ; Chang-Jiang LIU ; Yun-Qian XIE ; Fei-Hu BAI
Modern Interventional Diagnosis and Treatment in Gastroenterology 2024;29(4):393-397
		                        		
		                        			
		                        			Objective To explore the relevant risk factors of H.pylori infection,and provide reference for prevention and treatment of H.pylori in this area,and further provide theoretical basis for the prevention and treatment of gastric cancer.Methods A total of 1200 residents in four districts of Haikou city were investigated by questionnaire and urea 14 C breath test by holistic stratified random sampling to calculate the population infection rate and analyze the risk factors of infection.Results The total infection rate was 32.5%,which was lower than the national H.pylori infection rate.No consumption of fruits and vegetables,no habit of washing hands before meals,and people with gastrointestinal symptoms,are independent risk factors of H.pylori infection.No consumption of pickled products is of great significance to prevent H.pylori infection.Conclusion The prevalence of H.pylori infection in the population of Haikou is lower than the national average,and H.pylori infection is closely related to the poor living habits of residents.
		                        		
		                        		
		                        		
		                        	
		                				8.Cloning and preliminary inquiry of AlWRKY65  from Atractylodes lancea 
		                			
		                			Feng-ya GUAN ; Wei-wei LIU ; Kai-wen CHI ; Kai-ling ZENG ; Jin XIE ; Liang-ping ZHA
Acta Pharmaceutica Sinica 2024;59(5):1494-1502
		                        		
		                        			
		                        			 WRKY transcription factor is a type of transcription factor unique to plants and plays an important role in various physiological processes of plants. This study is based on the transcriptome data of 
		                        		
		                        	
9.Species-level Microbiota of Biting Midges and Ticks from Poyang Lake
Jian GONG ; Fei Fei WANG ; Qing Yang LIU ; Ji PU ; Zhi Ling DONG ; Hui Si ZHANG ; Zhou Zhen HUANG ; Yuan Yu HUANG ; Ben Ya LI ; Xin Cai YANG ; Meihui Yuan TAO ; Jun Li ZHAO ; Dong JIN ; Yun Li LIU ; Jing YANG ; Shan LU
Biomedical and Environmental Sciences 2024;37(3):266-277,中插1-中插3
		                        		
		                        			
		                        			Objective The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area,namely,Qunlu Practice Base,Peach Blossom Garden,and Huangtong Animal Husbandry,and whether vectors carry any bacterial pathogens that may cause diseases to humans,to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit(OPU)analysis,we characterized the species-level microbial community structure of two important vector species,biting midges and ticks,including 33 arthropod samples comprising 3,885 individuals,collected around Poyang Lake. Results A total of 662 OPUs were classified in biting midges,including 195 known species and 373 potentially new species,and 618 OPUs were classified in ticks,including 217 known species and 326 potentially new species.Surprisingly,OPUs with potentially pathogenicity were detected in both arthropod vectors,with 66 known species of biting midges reported to carry potential pathogens,including Asaia lannensis and Rickettsia bellii,compared to 50 in ticks,such as Acinetobacter lwoffii and Staphylococcus sciuri.We found that Proteobacteria was the most dominant group in both midges and ticks.Furthermore,the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria.Pantoea sp7 was predominant in biting midges,while Coxiella sp1 was enriched in ticks.Meanwhile,Coxiella spp.,which may be essential for the survival of Haemaphysalis longicornis Neumann,were detected in all tick samples.The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion Biting midges and ticks carry large numbers of known and potentially novel bacteria,and carry a wide range of potentially pathogenic bacteria,which may pose a risk of infection to humans and animals.The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.
		                        		
		                        		
		                        		
		                        	
10.Clinicopathological Features and Long-Term Prognostic Role of Human Epidermal Growth Factor Receptor-2 Low Expression in Chinese Patients with Early Breast Cancer:A Single-Institution Study
Qing Zi KONG ; Qun Li LIU ; Qin De HUANG ; Tong Yu WANG ; Jie Jing LI ; Zheng ZHANG ; Xi Xi WANG ; Ling Chuan LIU ; Di Ya ZHANG ; Kang Jia SHAO ; Min Yi ZHU ; Meng Yi CHEN ; Mei LIU ; Hong Wei ZHAO
Biomedical and Environmental Sciences 2024;37(5):457-470
		                        		
		                        			
		                        			Objective This study aimed to comprehensively analyze and compare the clinicopathological features and prognosis of Chinese patients with human epidermal growth factor receptor 2(HER2)-low early breast cancer(BC)and HER2-IHC0 BC. Methods Patients diagnosed with HER2-negative BC(N=999)at our institution between January 2011 and December 2015 formed our study population.Clinicopathological characteristics,association between estrogen receptor(ER)expression and HER2-low,and evolution of HER2 immunohistochemical(IHC)score were assessed.Kaplan-Meier method and log-rank test were used to compare the long-term survival outcomes(5-year follow-up)between the HER2-IHC0 and HER2-low groups. Results HER2-low BC group tended to demonstrate high expression of ER and more progesterone receptor(PgR)positivity than HER2-IHC0 BC group(P<0.001).The rate of HER2-low status increased with increasing ER expression levels(Mantel-Haenszel χ2 test,P<0.001,Pearson's R=0.159,P<0.001).Survival analysis revealed a significantly longer overall survival(OS)in HER2-low BC group than in HER2-IHC0 group(P=0.007)in the whole cohort and the hormone receptor(HR)-negative group.There were no significant differences between the two groups in terms of disease-free survival(DFS).The discordance rate of HER2 IHC scores between primary and metastatic sites was 36.84%. Conclusion HER2-low BC may not be regarded as a unique BC group in this population-based study due to similar clinicopathological features and prognostic roles.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail