1.Clinicopathological Features and Long-Term Prognostic Role of Human Epidermal Growth Factor Receptor-2 Low Expression in Chinese Patients with Early Breast Cancer:A Single-Institution Study
Qing Zi KONG ; Qun Li LIU ; Qin De HUANG ; Tong Yu WANG ; Jie Jing LI ; Zheng ZHANG ; Xi Xi WANG ; Ling Chuan LIU ; Di Ya ZHANG ; Kang Jia SHAO ; Min Yi ZHU ; Meng Yi CHEN ; Mei LIU ; Hong Wei ZHAO
Biomedical and Environmental Sciences 2024;37(5):457-470
		                        		
		                        			
		                        			Objective This study aimed to comprehensively analyze and compare the clinicopathological features and prognosis of Chinese patients with human epidermal growth factor receptor 2(HER2)-low early breast cancer(BC)and HER2-IHC0 BC. Methods Patients diagnosed with HER2-negative BC(N=999)at our institution between January 2011 and December 2015 formed our study population.Clinicopathological characteristics,association between estrogen receptor(ER)expression and HER2-low,and evolution of HER2 immunohistochemical(IHC)score were assessed.Kaplan-Meier method and log-rank test were used to compare the long-term survival outcomes(5-year follow-up)between the HER2-IHC0 and HER2-low groups. Results HER2-low BC group tended to demonstrate high expression of ER and more progesterone receptor(PgR)positivity than HER2-IHC0 BC group(P<0.001).The rate of HER2-low status increased with increasing ER expression levels(Mantel-Haenszel χ2 test,P<0.001,Pearson's R=0.159,P<0.001).Survival analysis revealed a significantly longer overall survival(OS)in HER2-low BC group than in HER2-IHC0 group(P=0.007)in the whole cohort and the hormone receptor(HR)-negative group.There were no significant differences between the two groups in terms of disease-free survival(DFS).The discordance rate of HER2 IHC scores between primary and metastatic sites was 36.84%. Conclusion HER2-low BC may not be regarded as a unique BC group in this population-based study due to similar clinicopathological features and prognostic roles.
		                        		
		                        		
		                        		
		                        	
2.Phase Separation of Biomacromolecules and Its Important Role in Transcriptional Regulation
Xiang-Dong ZHAO ; Le WANG ; Lu-Jie MA ; De-Bao XIE ; Meng-Di GAO ; Ya-Nan MENG ; Fan-Li ZENG
Progress in Biochemistry and Biophysics 2024;51(4):743-753
		                        		
		                        			
		                        			Cells not only contain membrane-bound organelles (MBOs), but also membraneless organelles (MLOs) formed by condensation of many biomacromolecules. Examples include RNA-protein granules such as nucleoli and PML nuclear bodies (PML-NBs) in the nucleus, as well as stress granules and P-bodies in the cytoplasm. Phase separation is the basic organizing principle of the form of the condensates or membraneless organelles (MLOs) of biomacromolecules including proteins and nucleic acids. In particular, liquid-liquid phase separation (LLPS) compartmentalises and concentrates biological macromolecules into liquid condensates. It has been found that phase separation of biomacromolecules requires some typical intrinsic characteristics, such as intrinsically disordered regions, modular domains and multivalent interactions. The phase separation of biomacromolecules plays a key role in many important cell activities. In recent years, the phase separation of biomacromolecules phase has become a focus of research in gene transcriptional regulation. Transcriptional regulatory elements such as RNA polymerases, transcription factors (TFs), and super enhancers (SEs) all play important roles through phase separation. Our group has previously reported for the first time that long-term inactivation or absence of assembly factors leads to the formation of condensates of RNA polymerase II (RNAPII) subunits in the cytoplasm, and this process is reversible, suggesting a novel regulatory model of eukaryotic transcription machinery. The phase separation of biomacromolecules provides a biophysical understanding for the rapid transmission of transcriptional signals by a large number of TFs. Moreover, phase separation during transcriptional regulation is closely related to the occurrence of cancer. For example, the activation of oncogenes is usually associated with the formation of phase separation condensates at the SEs. In this review, the intrinsic characteristics of the formation of biomacromolecules phase separation and the important role of phase separation in transcriptional regulation are reviewed, which will provide reference for understanding basic cell activities and gene regulation in cancer. 
		                        		
		                        		
		                        		
		                        	
3.Reflection and prospect on mechanism of dopamine reward system involvement in depression loop and traditional Chinese medicine intervention research
Zhuo-Xian LI ; Liu-Chang ZHOU ; Li-Hong YE ; Di DENG ; Jin-Lan ZHAO ; Ya-Fei SHI ; Rong ZHANG
Chinese Pharmacological Bulletin 2024;40(8):1424-1429
		                        		
		                        			
		                        			In the process of seeking new strategies to improve the efficacy of antidepressants,traditional Chinese medicine inter-vention has gradually revealed its unique prevention and treat-ment advantages.The dopamine reward system is closely in-volved in the pathological occurrence and development of depres-sion.Currently,research has mostly focused on the functional mechanism of a specific nucleus in the dopamine reward system,and there is less research focused on the functional mechanism of the neural circuit.In the current micro research on reward cir-cuits,the association between abnormal reward circuits and neg-ative emotions such as anxiety and depression has been widely recognized.Traditional Chinese medicine intervention can exert antidepressant effects by influencing reward circuits.This article provides a review on the loop mechanism of dopamine reward system involvement in depression and research on traditional Chinese medicine intervention.
		                        		
		                        		
		                        		
		                        	
		                				4.Identification of constituents in vitro  and blood-absorbed ingredients of protective effect on acute liver injury from Yin Chen Hao decoction based on UPLC-QTOF/MS
		                			
		                			Yi-qing YAO ; Qi CAO ; Xuan WANG ; Hui-lin MA ; Yu-miao CHEN ; Si-yi ZHAO ; Min-xuan GUO ; Jia-meng HU ; Dong-yao WANG ; Di-ya LÜ
Acta Pharmaceutica Sinica 2023;58(5):1173-1180
		                        		
		                        			
		                        			 To identify the active constituents 
		                        		
		                        	
5.Mechanism of total flavonoids of Rhododendra simsii in alleviating ischemic brain injury.
Chen-Chen JIANG ; Lei SHI ; Xin-Ya ZHAO ; Hui ZHANG ; Zi-Xu LI ; Jia-Jun LU ; Yu-Xiang HE ; Di CAO ; Hao-Ran HU ; Jun HAN
China Journal of Chinese Materia Medica 2023;48(2):455-464
		                        		
		                        			
		                        			This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 μg·mL~(-1)) group, and TFR(30 μg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Brain Ischemia/metabolism*
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			Interleukin-1
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Reperfusion Injury/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/genetics*
		                        			;
		                        		
		                        			Flavonoids/pharmacology*
		                        			;
		                        		
		                        			Rhododendron/chemistry*
		                        			
		                        		
		                        	
6.A novel inhibitor of ARfl and ARv7 induces protein degradation to overcome enzalutamide resistance in advanced prostate cancer.
Yan LI ; Ya CHU ; Guangjiang SHI ; Xiaobin WANG ; Wanli YE ; Chun SHAN ; Dajia WANG ; Di ZHANG ; Wei HE ; Jingwei JIANG ; Shuqian MA ; Yuhong HAN ; Zhili ZHAO ; Shijia DU ; Zhen CHEN ; Zhiyu LI ; Yong YANG ; Chen WANG ; Xi XU ; Hongxi WU
Acta Pharmaceutica Sinica B 2022;12(11):4165-4179
		                        		
		                        			
		                        			Enzalutamide (ENZ) is a second-generation androgen receptor (AR) antagonist used for the treatment of castration-resistant prostate cancer (CRPC) and reportedly prolongs survival time within a year of starting therapy. However, CRPC patients can develop ENZ resistance (ENZR), mainly driven by abnormal reactivation of AR signaling, involving increased expression of the full-length AR (ARfl) or dominantly active androgen receptor splice variant 7 (ARv7) and ARfl/ARv7 heterodimers. There is currently no efficient treatment for ENZR in CRPC. Herein, a small molecule LLU-206 was rationally designed based on the ENZ structure and exhibited potent inhibition of both ARfl and constitutively active ARv7 to inhibit PCa proliferation and suppress ENZR in CRPC. Mechanically, LLU-206 promoted ARfl/ARv7 protein degradation and decreased ARfl/ARv7 heterodimers through mouse double minute 2-mediated ubiquitination. Finally, LLU-206 exhibited favorable pharmacokinetic properties with poor permeability across the blood-brain barrier, leading to a lower prevalence of adverse effects, including seizure and neurotoxicity, than ENZ-based therapies. In a nutshell, our findings demonstrated that LLU-206 could effectively inhibit ARfl/ARv7-driven CRPC by dual-targeting of ARfl/ARv7 heterodimers and protein degradation, providing new insights for the design of new-generation AR inhibitors to overcome ARfl/ARv7-driven CRPC.
		                        		
		                        		
		                        		
		                        	
7.Effects and Mechanisms of Lactobacillus Paracasei on the Prevention of Atherosclerosis
Xiao-hui WANG ; Xin-xiu BAI ; Shan-shan ZHU ; Lu-di LIU ; Ya-wen ZHAO ; Jia-lu YANG ; Min XIA
Journal of Sun Yat-sen University(Medical Sciences) 2022;43(1):51-60
		                        		
		                        			
		                        			ObjectiveTo explore the effect and mechanism of Lactobacillus paracasei (Lpa) on the prevention of atherosclerosis. MethodsEight-week-old male ApoE-/- mice were used to establish the atherosclerotic model, and the mice were randomly divided into three groups: ① normal chow control group: ApoE-/- + normal chow diet (n=10); ② model group: ApoE-/- + western diet + PBS (n=10); ③ Lactobacillus paracasei intervention group: ApoE-/- + western diet + Lactobacillus paracasei (n=10). followed by histological evaluations of atherosclerotic lesion in aorta. Immunofluorescence analysis was used to measure the cholesterol accumulation and cholesterol uptake of peritoneal macrophages. Western blot was used to measure the protein expression level of class A scavenger receptor (SR-A) and class B scavenger receptor (CD36). ResultIntervention of Lactobacillus paracasei can significantly suppress the formation of atherosclerotic plaque in ApoE-/- mice, reduce the inflammatory reaction of arterial blood vessels, inhibit the lipid accumulation and cholesterol uptake of macrophages, and reduce the protein expression of SR-A. ConclusionsLactobacillus paracasei may protect against atherosclerosis by preventing the inflammation of arterial blood vessels and the formation of foam cells by reducing the protein expression of SR-A. 
		                        		
		                        		
		                        		
		                        	
8.β-Elemene induces apoptosis and autophagy in colorectal cancer cells through regulating the ROS/AMPK/mTOR pathway.
Guo-Yu WANG ; Lei ZHANG ; Ya-Di GENG ; Bin WANG ; Xiao-Jun FENG ; Zhao-Lin CHEN ; Wei WEI ; Ling JIANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(1):9-21
		                        		
		                        			
		                        			β-Elemene is an effective anti-cancer ingredient extracted from the genus Curcuma (Zingiberaceae familiy). In the present study, we demonstrated that β-elemene inhibited the proliferation of colorectal cancer cells and induced cell cycle arrest in the G2/M phase. In addition, β-elemene induced nuclear chromatin condensation and cell membrane phosphatidylserine eversion, decreased cell mitochondrial membrane potential, and promoted the cleavage of caspase-3, caspase-9 and PARP proteins, indicating apoptosis in colorectal cancer cells. At the same time, β-elemene induced autophagy response, and the treated cells showed autophagic vesicle bilayer membrane structure, which was accompanied by up-regulation of the expression of LC3B and SQSTM1. Furthermore, β-elemene increased ROS levels in colorectal cancer cells, promoted phosphorylation of AMPK protein, and inhibited mTOR protein phosphorylation. In the experiments in vivo, β-elemene inhibited the tumor size and induced apoptosis and autophagy in nude mice. In summary, β-elemene inhibited the occurrence and development of colon cancer xenografts in nude mice, and significantly induced apoptosis and autophagy in colorectal cancer cells in vitro. These effects were associated with regulation of the ROS/AMPK/mTOR signaling. We offered a molecular basis for the development of β-elemene as a promising anti-tumor drug candidate for colorectal cancer.
		                        		
		                        		
		                        		
		                        			AMP-Activated Protein Kinases/genetics*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Colorectal Neoplasms/genetics*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			Sesquiterpenes
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/genetics*
		                        			
		                        		
		                        	
9.Effect of fire needling on imiquimod induced psoriasis-like lesion and STAT3 pathway in mice.
Fang FENG ; Yan WANG ; Jing-Xia ZHAO ; Ting-Ting DI ; Yu-Jiao MENG ; Zhao-Xia CHEN ; Cong QI ; Xue-Qing HU ; Ya-Zhuo WANG ; Ping LI
Chinese Acupuncture & Moxibustion 2022;42(5):541-548
		                        		
		                        			OBJECTIVE:
		                        			To observe the effect of fire needling on psoriasis-like lesion and the signal transducer and activator of transcription 3 (STAT3) pathway in mice and compare the therapeutic effect between different interventions of fire needling therapy (surrounding technique of fire needling, fire needling at "Dazhui" [GV 14] and "Zusanli" [ST 36]).
		                        		
		                        			METHODS:
		                        			Thirty male BALB/c mice were randomized into a blank group, a model group, a dexamthasone group, a surrounding technique group and an acupoint group, 6 mice in each one. Except the blank group, the mice in the rest groups were established as psoriasis-like lesion model by topical application with imiquimod cream, once daily, consecutively for 8 days. From day 4 to day 8, in the dexamthasone group, gastric infusion with 0.2 mL dexamthasone was administered, once daily. On day 4, 6 and 8, in the surrounding technique group, fire needling was exerted around the skin lesion; and fire needling was applied to "Dazhui" (GV 14) and "Zusanli" (ST 36) in the acupoint group, once a day. The changes in skin lesion on the dorsal parts of mice were observed in each group to score the psoriasis area and severity index (PASI). Using HE staining, the dermal morphological changes and epidermal thickness were observed in the mice of each group. The positive expression of proliferating cell-associated antigen Ki-67 was determined by immunofluorescence. Immunohistochemistry method was used to determine the expressions of , and T cells of skin tissue in each group. Using real-time PCR, the expressions of interleukin (IL)-17, IL-22, tumor necrosis factor α(TNF-α) mRNA were determined. Western blot method was adopted to determine the protein expressions of STAT3 and p-STAT3 in skin tissue in each group.
		                        		
		                        			RESULTS:
		                        			Compared with the blank group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all increased in the mice of the model group (P<0.01). Except for the erythema scores of the dexamethasone group and the surrounding technique group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all decreased in each intervention group as compared with the model group (P<0.01). The infiltration scores and the total scores in the dexamethasone group and the acupoint group were lower than those in the surrounding technique group respectively (P<0.01, P<0.05). In comparison with the blank group, Ki-67 positive cell numbers and the numbers of , and T cells in skin tissue were increased in the mice of the model group (P<0.01). Ki-67 positive cell numbers and the numbers of , and T cells were reduced in each intervention group as compared with the model group (P<0.01), and the numbers of and T cells in the acupoint group were less than the surrounding technique group (P<0.01). Compared with the blank group, the mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all increased in the model group (P<0.01). The mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all decreased in each intervention group as compared with the model group (P<0.01, P<0.05). The mRNA expressions of IL-17, IL-22 and TNF-α in the acupoint group, as well as mRNA expression of IL-17 in the surrounding technique group were all lower than the dexamethasone group (P<0.01), while, the mRNA expression of IL-22 in the acupoint group was lower than the surrounding technique group (P<0.01).
		                        		
		                        			CONCLUSION
		                        			Fire needling therapy improves skin lesion severity in imiquimod induced psoriasis-like lesion of the mice, which is probably related to the inhibition of STAT3 pathway activation and the decrease of Th17 inflammatory factors expression. The systemic regulation of fire needling at "Dazhui" (GV 14) and "Zusanli" (ST 36) is superior to the local treatment.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Dexamethasone/therapeutic use*
		                        			;
		                        		
		                        			Imiquimod/metabolism*
		                        			;
		                        		
		                        			Interleukin-17/metabolism*
		                        			;
		                        		
		                        			Ki-67 Antigen/metabolism*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Psoriasis/drug therapy*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			STAT3 Transcription Factor/pharmacology*
		                        			;
		                        		
		                        			Skin/pathology*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
10.Study on mechanisms of Th17/Treg imbalance in patients with cystic echinococcosis based on miRNA expression profiles.
Di LU ; Jia Hui SONG ; Zi Jian MA ; Peng Yue ZHANG ; Lei XU ; Chuan WEI ; Ying CHEN ; Sha ZHOU ; Ji Feng ZHU ; Ya Lin LI ; Jia Qing ZHAO ; Ming Xing ZHU ; Rui ZHAO ; Hai WANG ; Xiao Jun CHEN ; Wei ZHAO ; Chuan SU
Chinese Journal of Schistosomiasis Control 2022;34(3):277-285
		                        		
		                        			OBJECTIVE:
		                        			To investigate the serum microRNA (miRNA) expression and examine the impact of miRNA expression profiles on T helper type 17 (Th17)/regulatory T cells (Treg) imbalance among patients with cystic echinococcosis, so as to provide insights into the illustration of the mechanisms underlying chronic Echinococcus granulosus infections, and long-term pathogenesis.
		                        		
		                        			METHODS:
		                        			Total RNA was extracted from the sera of cystic echinococcosis patients and healthy controls, and subjected to high-throughput sequencing with the Illumina sequencing platform. Known miRNAs were annotated and new miRNAs were predicted using the miRBase database and the miRDeep2 tool, and differentially expressed miRNAs were identified. The target genes of differentially expressed miRNAs were predicted using the software miRanda and TargetScan, and the intersection was selected for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Among the differentially expressed miRNAs with the 20 highest fold changes, miRNAs that targeted genes relating to key transcription factors RORC and FOXP3 that determine the production of Th17 and Treg cells or their important regulatory pathways (PI3K-Akt and mTOR pathways) were matched.
		                        		
		                        			RESULTS:
		                        			A total of 53 differentially expressed miRNAs were screened in sera of cystic echinococcosis patients and healthy controls, including 47 up-regulated miRNAs and 6 down-regulated miRNAs. GO enrichment analysis showed that these differentially expressed miRNA were involved DNA transcription and translation, cell components, cell morphology, neurodevelopment and metabolic decomposition, and KEGG pathway analysis showed that the differentially expressed miRNA were mainly involved in MAPK, PI3K-Akt and mTOR signaling pathways. Among the differentially expressed miRNAs with the 20 highest fold changes, there were 3 miRNAs that had a potential for target regulation of RORC, and 15 miRNAs that had a potential to target the PI3K-Akt and mTOR signaling pathways.
		                        		
		                        			CONCLUSIONS
		                        			Significant changes are found in serum miRNA expression profiles among patients with E. granulosus infections, and differentially expressed miRNAs may lead to Th17/Treg imbalance through targeting the key transcription factors of Th17/Treg or PI3K-Akt and mTOR pathways, which facilitates the long-term parasitism of E. granulosus in hosts and causes a chronic disease.
		                        		
		                        		
		                        		
		                        			Echinococcosis/genetics*
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/genetics*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/genetics*
		                        			;
		                        		
		                        			T-Lymphocytes, Regulatory
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/genetics*
		                        			;
		                        		
		                        			Th17 Cells
		                        			;
		                        		
		                        			Transcription Factors/genetics*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail