1.Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
Ying-Ying CHEN ; Shang-Lin JIANG ; Liang-Hui HUANG ; Ya-Guang ZENG ; Xue-Hua WANG ; Wei ZHENG
Progress in Biochemistry and Biophysics 2025;52(8):2163-2172
		                        		
		                        			
		                        			ObjectivePrimary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue, ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound (CEUS), face limitations in applicability and objectivity. The primary objective of this study was to develop an advanced, light-weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. MethodsThis retrospective study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN), and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics: area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity (SE), and specificity (SP). ResultsThe evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84. Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification. ConclusionThe 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’ diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability. 
		                        		
		                        		
		                        		
		                        	
2.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
		                        		
		                        		
		                        		
		                        	
3.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
		                        		
		                        			 Background:
		                        			The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies. 
		                        		
		                        			Methods:
		                        			MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function. 
		                        		
		                        			Results:
		                        			Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores. 
		                        		
		                        			Conclusion
		                        			Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall. 
		                        		
		                        		
		                        		
		                        	
4.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
		                        		
		                        			 Background:
		                        			The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies. 
		                        		
		                        			Methods:
		                        			MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function. 
		                        		
		                        			Results:
		                        			Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores. 
		                        		
		                        			Conclusion
		                        			Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall. 
		                        		
		                        		
		                        		
		                        	
5.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
		                        		
		                        			 Background:
		                        			The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies. 
		                        		
		                        			Methods:
		                        			MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function. 
		                        		
		                        			Results:
		                        			Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores. 
		                        		
		                        			Conclusion
		                        			Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall. 
		                        		
		                        		
		                        		
		                        	
6.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
		                        		
		                        		
		                        		
		                        	
7.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
		                        		
		                        			 Background:
		                        			The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies. 
		                        		
		                        			Methods:
		                        			MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function. 
		                        		
		                        			Results:
		                        			Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores. 
		                        		
		                        			Conclusion
		                        			Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall. 
		                        		
		                        		
		                        		
		                        	
8.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
		                        		
		                        		
		                        		
		                        	
9.The role of glucose metabolism reprogramming and its targeted therapeutic agents in inflammation-related diseases
Yi WEI ; Xiao-man JIANG ; Shi-lin XIA ; Jing XU ; Ya LI ; Ran DENG ; Yan WANG ; Hong WU
Acta Pharmaceutica Sinica 2024;59(3):511-519
		                        		
		                        			
		                        			 Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases. 
		                        		
		                        		
		                        		
		                        	
10.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
            
Result Analysis
Print
Save
E-mail