1.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
2.Exploring the risk "time interval window" of sequential medication of Reduning injection and penicillin G injection based on the correlation between biochemical indexes and metabolomics characteristics
Ming-liang ZHANG ; Yu-long CHEN ; Xiao-yan WANG ; Xiao-fei CHEN ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Wei-xia LI ; Jin-fa TANG
Acta Pharmaceutica Sinica 2024;59(7):2098-2107
Exploring the risk "time interval window" of sequential medication of Reduning injection (RDN) and penicillin G injection (PG) by detecting the correlation between serum biochemical indexes and plasma metabonomic characteristics, in order to reduce the risk of adverse reactions caused by the combination of RDN and PG. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). The changes of biochemical indexes in serum of rats were detected by enzyme-linked immunosorbent assay. It was determined that RDN combined with PG could cause pseudo-allergic reactions (PARs) activated by complement pathway. Further investigation was carried out at different time intervals (1.5, 2, 3.5, 4, 6, and 8 h PG+RDN). It was found that sequential administration within 3.5 h could cause significant PARs. However, PARs were significantly reduced after administration interval of more than 4 h. LC-MS was used for plasma metabolomics analysis, and the levels of serum biochemical indicators and plasma metabolic profile characteristics were compared in parallel. 22 differential metabolites showed similar or opposite trends to biochemical indicators before and after 3.5 h. And enriched to 10 PARs-related pathways such as arachidonic acid metabolism, steroid hormone biosynthesis, linoleic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism. In conclusion, there is a risk "time interval window" phenomenon in the adverse drug reactions caused by the sequential use of RDN and PG, and the interval medication after the "time interval window" can significantly reduce the risk of adverse reactions.
3.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
4.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell carcinoma treatment
CHEN Hongjun ; LEI Qi ; WANG Zhilin ; ZHONG Xiaowu ; QIU Ya ; LI Lihua
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(3):178-187
Objective:
To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.
Methods:
The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.
Results:
A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.
Conclusion
RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.
5.Analysis of Helicobacter pylori infection in the natural population of Sanya City
Shi-Mei HUANG ; Lian-Guo LAN ; Da-Ya ZHANG ; Run-Xiang CHEN ; Xiao-Dong ZHANG ; Chen CHEN ; Fan ZENG ; Da LI ; Xian-Feng HUANG ; Qi WANG ; Shi-Ju CHEN ; Lei GAO ; Jun-Tao ZENG ; Fei-Hu BAI
Modern Interventional Diagnosis and Treatment in Gastroenterology 2024;29(2):141-145
Objective To explore the current status of H.pylori infection in the natural population of Sanya City,analyze its influencing factors,and provide a reference basis for the prevention and control of H.pylori infection.Methods A total of 677 residents from four districts of Sanya City were selected by overall stratified random sampling method,and were subjected to urea 14C breath test and questionnaire survey to calculate the positive rate of H.pylori in the natural population and analyze the influencing factors of H.pylori infection.Results A total of 606 residents were included,and the number of H.pylori positive detections was 261,with a positive detection rate of 38.5%.Among them,different ethnicity,marital status,smoking,eating vegetables and fruits,and literacy level were associated with H.pylori infection(P<0.05);gender,age,BMI,alcohol consumption,drinking water source,betel quid chewing,and the number of cohabitants were not significantly associated with H.pylori infection(P>0.05).Family infection was an independent risk factor for H.pylori infection in the natural population of Sanya City,and Li ethnicity,frequent consumption of fruits and vegetables,and college and higher education level were independent protective factors for H.pylori infection in the natural population of Sanya City.Conclusion The rate of H.pylori infection in the natural population of Sanya City is lower than the national average.Consuming more fruits and vegetables and improving the awareness of hygiene protection are conducive to the prevention of H.pylori infection;and the promotion of the family and related members with the same examination and treatment is important to avoid aggregation of infection within the family.
6.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
7.Improved unilateral puncture PVP based on 3D printing technology for the treatment of osteoporotic vertebral com-pression fracture
Wei-Li JIANG ; Tao LIU ; Qing-Bo ZHANG ; Hui CHEN ; Jian-Zhong BAI ; Shuai WANG ; Jia-Wei CHENG ; Ya-Long GUO ; Gong ZHOU ; Guo-Qi NIU
China Journal of Orthopaedics and Traumatology 2024;37(1):7-14
Objective To investigate the clinical effect of unilateral percutaneous vertebroplasty(PVP)combined with 3D printing technology for the treatment of thoracolumbar osteoporotic compression fracture.Methods A total of 77 patients with thoracolumbar osteoporotic compression fractures from October 2020 to April 2022 were included in the study,all of which were vertebral body compression fractures caused by trauma.According to different treatment methods,they were di-vided into experimental group and control group.Thirty-two patients used 3D printing technology to improve unilateral transpedicle puncture vertebroplasty in the experimental group,there were 5 males and 27 females,aged from 63 to 91 years old with an average of(77.59±8.75)years old.Forty-five patients were treated with traditional bilateral pedicle puncture vertebroplasty,including 7 males and 38 females,aged from 60 to 88 years old with an average of(74.89±7.37)years old.Operation time,intraoperative C-arm X-ray times,anesthetic dosage,bone cement injection amount,bone cement diffusion good and good rate,complications,vertebral height,kyphotic angle(Cobb angle),visual analogue scale(VAS),Oswestry disability index(ODI)and other indicators were recorded before and after surgery,and statistically analyzed.Results All patients were followed up for 6 to 23 months,with preoperative imaging studies,confirmed for thoracolumbar osteoporosis com-pression fractures,two groups of patients with postoperative complications,no special two groups of patients'age,gender,body mass index(BMI),time were injured,the injured vertebral distribution had no statistical difference(P>0.05),comparable data.Two groups of patients with bone cement injection,bone cement dispersion rate,preoperative and postoperative vertebral body height,protruding after spine angle(Cobb angle),VAS,ODI had no statistical difference(P>0.05).The operative time,intra-operative fluoroscopy times and anesthetic dosage were statistically different between the two groups(P<0.05).Compared with the traditional bilateral puncture group,the modified unilateral puncture group combined with 3D printing technology had shorter operation time,fewer intraoperative fluoroscopy times and less anesthetic dosage.The height of anterior vertebral edge,kyphosis angle(Cobb angle),VAS score and ODI of the affected vertebrae were statistically different between two groups at each time point after surgery(P<0.05).Conclusion In the treatment of thoracolumbar osteoporotic compression fractures,3D printing technology is used to improve unilateral puncture PVP,which is convenient and simple,less trauma,short operation time,fewer fluoroscopy times,satisfactory distribution of bone cement,vertebral height recovery and kyphotic Angle correction,and good functional improvement.
8.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
9.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
10.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.


Result Analysis
Print
Save
E-mail