1.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis
Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
Three 2,3-diketoquinoxaline alkaloids were isolated from
2.Phase Separation of Biomacromolecules and Its Important Role in Transcriptional Regulation
Xiang-Dong ZHAO ; Le WANG ; Lu-Jie MA ; De-Bao XIE ; Meng-Di GAO ; Ya-Nan MENG ; Fan-Li ZENG
Progress in Biochemistry and Biophysics 2024;51(4):743-753
Cells not only contain membrane-bound organelles (MBOs), but also membraneless organelles (MLOs) formed by condensation of many biomacromolecules. Examples include RNA-protein granules such as nucleoli and PML nuclear bodies (PML-NBs) in the nucleus, as well as stress granules and P-bodies in the cytoplasm. Phase separation is the basic organizing principle of the form of the condensates or membraneless organelles (MLOs) of biomacromolecules including proteins and nucleic acids. In particular, liquid-liquid phase separation (LLPS) compartmentalises and concentrates biological macromolecules into liquid condensates. It has been found that phase separation of biomacromolecules requires some typical intrinsic characteristics, such as intrinsically disordered regions, modular domains and multivalent interactions. The phase separation of biomacromolecules plays a key role in many important cell activities. In recent years, the phase separation of biomacromolecules phase has become a focus of research in gene transcriptional regulation. Transcriptional regulatory elements such as RNA polymerases, transcription factors (TFs), and super enhancers (SEs) all play important roles through phase separation. Our group has previously reported for the first time that long-term inactivation or absence of assembly factors leads to the formation of condensates of RNA polymerase II (RNAPII) subunits in the cytoplasm, and this process is reversible, suggesting a novel regulatory model of eukaryotic transcription machinery. The phase separation of biomacromolecules provides a biophysical understanding for the rapid transmission of transcriptional signals by a large number of TFs. Moreover, phase separation during transcriptional regulation is closely related to the occurrence of cancer. For example, the activation of oncogenes is usually associated with the formation of phase separation condensates at the SEs. In this review, the intrinsic characteristics of the formation of biomacromolecules phase separation and the important role of phase separation in transcriptional regulation are reviewed, which will provide reference for understanding basic cell activities and gene regulation in cancer.
3.Determination ideas and influencing factors of essential performance for GB 9706 series of standards
Bo LIU ; Ya-Nan LI ; Long-Fei ZHANG ; Fei-Xiang HOU ; Yu-Chen MAO ; Peng-Yue GAO
Chinese Medical Equipment Journal 2024;45(11):72-76
The risks related to the essential performance were analyzed with considerations on the concept of the essential performance in GB 9706.1-2020 Medical electrical equipment-Part 1:General requirements for basic safety and essential performance,and the determination process for the essential performance of medical electrical equipment was summarized.The essential performance of the example equipment was clarified with the semi-quantitative risk analysis,and the influences of the arrangement of the electromagnetic compatibility test on the determination of the essential performance were explored with the conducted immunity test and conventional test.References were provided for standard users to understand and determine the essential performance effectively.[Chinese Medical Equipment Journal,2024,45(11):72-76]
4.Early gait analysis after total knee arthroplasty based on artificial intelligence dynamic image recognition
Ming ZHANG ; Ya-Nan SUI ; Cheng WANG ; Hao-Chong ZHANG ; Zhi-Wei CAI ; Quan-Lei ZHANG ; Yu ZHANG ; Tian-Tian XIA ; Xiao-Ran ZU ; Yi-Jian HUANG ; Cong-Shu HUANG ; Xiang LI
China Journal of Orthopaedics and Traumatology 2024;37(9):855-861
Objective To explore early postoperative gait characteristics and clinical outcomes after total knee arthroplasty(TKA).Methods From February 2023 to July 2023,26 patients with unilateral knee osteoarthritis(KOA)were treated with TKA,including 4 males and 22 females,aged from 57 to 85 years old with an average of(67.58±6.49)years old;body mass in-dex(BMI)ranged from 18.83 to 38.28 kg·m-2 with an average of(26.43±4.15)kg·m-2;14 patients on the left side,12 pa-tients on the right side;according to Kellgren-Lawrence(K-L)classification,6 patients with grade Ⅲ and 20 patients with grade Ⅳ;the courses of disease ranged from 1 to 14 years with an average of(5.54±3.29)years.Images and videos of standing up and walking,walking side shot,squatting and supine kneeling were taken with smart phones before operation and 6 weeks after operation.The human posture estimation framework OpenPose were used to analyze stride frequency,step length,step length,step speed,active knee knee bending angle,stride length,double support phase time,as well as maximum hip flexion angle and maximum knee bending angle on squatting position.Western Ontario and McMaster Universities(WOMAC)arthritis index and Knee Society Score(KSS)were used to evaluate clinical efficacy of knee joint.Results All patients were followed up for 5 to 7 weeks with an average of(6.00±0.57)weeks.The total score of WOMAC decreased from(64.85±11.54)before op-eration to(45.81±7.91)at 6 weeks after operation(P<0.001).The total KSS was increased from(101.19±9.58)before opera-tion to(125.50±10.32)at 6 weeks after operation(P<0.001).The gait speed,stride frequency and stride length of the affected side before operation were(0.32±0.10)m·s-1,(96.35±24.18)steps·min-1,(0.72±0.14)m,respectively;and increased to(0.48±0.11)m·s 1,(104.20±22.53)steps·min-1,(0.79±0.10)m at 6 weeks after operation(P<0.05).The lower limb support time and active knee bending angle decreased from(0.31±0.38)sand(125.21±11.64)° before operation to(0.11±0.04)s and(120.01±13.35)° at 6 weeks after operation(P<0.05).Eleven patients could able to complete squat before operation,13 patients could able to complete at 6 weeks after operation,and 9 patients could able to complete both before operation and 6 weeks after operation.In 9 patients,the maximum bending angle of crouching position was increased from 76.29° to 124.11° before operation to 91.35° to 134.12° at 6 weeks after operation,and the maximum bending angle of hip was increased from 103.70° to 147.25° before operation to 118.61° to 149.48° at 6 weeks after operation.Conclusion Gait analysis technology based on artificial intelligence image recognition is a safe and effective method to quantitatively identify the changes of pa-tients'gait.Knee pain of KOA was relieved and the function was improved,the supporting ability of the affected limb was im-proved after TKA,and the patient's stride frequency,stride length and stride speed were improved,and the overall movement rhythm of both lower limbs are more coordinated.
5.Effects of Zuogui Jiangtang Tongmai Recipe on necroptosis pathway in a rat model of type 2 diabetes mellitus complicated with cerebral infarction
Yu-Zhe CAI ; Ding-Xiang LI ; Yi-Xuan LIU ; Zheng LUO ; Jing-Jing YANG ; Han-Lin LEI ; Ya-Nan ZHANG ; Qin WU ; Jing CHEN ; Yi-Hui DENG
Chinese Traditional Patent Medicine 2024;46(9):2936-2942
AIM To investigate the effects of Zuogui Jiangtang Tongmai Recipe on necroptosis pathway in a rat model of type 2 diabetes mellitus(T2DM)complicated with cerebral infarction(CI).METHODS The SD rats were randomly divided into the sham operation group,the model group,the metformin group(0.045 g/kg),and the low,medium and high dose Zuogui Jiangtang Tongmai Recipe groups(6.5,13,26 g/kg),with 9 rats in each group.In contrast to rats of the sham operation group,rats of the other groups were given 4 weeks feeding of high-sugar and high-fat diet combined with intraperitoneal injection of streptozotocin to establish a T2DM rat model with one week stable blood glucose,followed by gavage of corresponding drugs 3 days before the establishment of the middle cerebral artery occlusion(MCAO)model.After 7 days of administration,the rats had their CI injury assessed by mNSS method and TTC staining;their level of blood glucose detected by blood glucose meter;their levels of glycated serum protein,serum TNF-α and IL-1β detected by ELISA;their cerebral mRNA expressions of FADD,RIPK1,RIPK3 and MLKL detected by RT-qPCR;and their cerebral protein expressions of FADD,p-RIPK1,p-RIPK3 and p-MLKL detected by Western blot.RESULTS Compared with the sham operation group,the model group displayed increased levels of blood glucose value,glycosylated serum protein,neurological function score,cerebral infarction volume,cerebral FADD,RIPK1,RIPK3 and MLKL mRNA expressions,cerebral FADD,p-RIPK1,p-RIPK3 and p-MLKL protein expressions,serum TNF-α and IL-1β levels(P<0.01);and more disordered and morphologically diverse neurons with smaller nucleus.Compared with the model group,the groups intervened with medium or high dose Zuogui Jiangtang Tongmai Recipe,or metformin shared improvement in terms of the aforementioned indices(P<0.05,P<0.01);and more neurons with regular morphology neat arrangement,and reduced cell gap.CONCLUSION Zuogui Jiangtang Tongmai Recipe can improve the neurological dysfunction of the rat model of T2DM complicated with CI,which may associate with the inhibited activation of necroptosis signaling pathway.
6.Effect of diosgenin on mTOR/FASN/HIF-1α/VEGFA expression in rats with non-alcoholic fatty liver disease.
Guo-Liang YIN ; Hong-Yi LIANG ; Peng-Peng LIANG ; Ya-Nan FENG ; Su-Wen CHEN ; Xiang-Yi LIU ; Wen-Chao PAN ; Feng-Xia ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1760-1769
The present study aimed to investigate the effect of diosgenin on mammalian target of rapamycin(mTOR), fatty acid synthase(FASN), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor A(VEGFA) expression in liver tissues of rats with non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin on lipogenesis and inflammation in NAFLD. Forty male SD rats were divided into a normal group(n=8) fed on the normal diet and an experimental group(n=32) fed on the high-fat diet(HFD) for the induction of the NAFLD model. After modeling, the rats in the experimental group were randomly divided into an HFD group, a low-dose diosgenin group(150 mg·kg~(-1)·d~(-1)), a high-dose diosgenin group(300 mg·kg~(-1)·d~(-1)), and a simvastatin group(4 mg·kg~(-1)·d~(-1)), with eight rats in each group. The drugs were continuously given by gavage for eight weeks. The levels of triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were detected by the biochemical method. The content of TG and TC in the liver was detected by the enzyme method. Enzyme-linked immunosorbent assay(ELISA) was used to measure interleukin 1β(IL-1β) and tumor necrosis factor α(TNF-α) in the serum. Lipid accumulation in the liver was detected by oil red O staining. Pathological changes of liver tissues were detected by hematoxylin-eosin(HE) staining. The mRNA and protein expression levels of mTOR, FASN, HIF-1α, and VEGFA in the liver of rats were detected by real-time fluorescence-based quantitative polymerase chain reaction(PCR) and Western blot, respectively. Compared with the normal group, the HFD group showed elevated body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.01), increased lipid accumulation in the liver(P<0.01), obvious liver steatosis, up-regulated mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.01), and increased protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). Compared with the HFD group, the groups with drug treatment showed lowered body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.05, P<0.01), reduced lipid accumulation in the liver(P<0.01), improved liver steatosis, decreased mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.05, P<0.01), and declining protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). The therapeutic effect of the high-dose diosgenin group was superior to that of the low-dose diosgenin group and the simvastatin group. Diosgenin may reduce liver lipid synthesis and inflammation and potentiate by down-regulating the mTOR, FASN, HIF-1α, and VEGFA expression, playing an active role in preventing and treating NAFLD.
Rats
;
Male
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Cholesterol, LDL
;
Rats, Sprague-Dawley
;
Liver
;
Inflammation/metabolism*
;
Diet, High-Fat/adverse effects*
;
TOR Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Body Weight
;
Mammals
7.Lnc-TMEM132D-AS1 overexpression reduces sensitivity of non-small cell lung cancer cells to osimertinib.
Qi Lin ZHAO ; Nan WANG ; Ya Wen LI ; Qing Tan WU ; Lan Xiang WU
Journal of Southern Medical University 2023;43(2):242-250
OBJECTIVE:
To screen the differentially expressed long non-coding RNAs (lncRNAs) in non-small cell lung cancer (NSCLC) cells with acquired resistance to osimertinib and explore their roles in drug resistance of the cells.
METHODS:
The cell lines H1975_OR and HCC827_OR with acquired osimertinib resistance were derived from their osimertinib-sensitive parental NSCLC cell lines H1975 and HCC827, respectively, and their sensitivity to osimertinib was assessed with CCK-8 assay, clone formation assay and flow cytometry. RNA sequencing (RNA-seq) and real-time quantitative PCR (qPCR) were used to screen the differentially expressed lncRNAs in osimertinib-resistant cells. The role of the identified lncRNA in osimertinib resistance was explored using CCK-8, clone formation and Transwell assays, and its subcellular localization and downstream targets were analyzed by nucleoplasmic separation, bioinformatics analysis and qPCR.
RESULTS:
The resistance index of H1975_OR and HCC827_OR cells to osimertinib was 598.70 and 428.82, respectively (P < 0.001), and the two cell lines showed significantly increased proliferation and colony-forming abilities with decreased apoptosis (P < 0.01). RNA-seq identified 34 differentially expressed lncRNAs in osimertinib-resistant cells, and among them lnc-TMEM132D-AS1 showed the highest increase of expression after acquired osimertinib resistance (P < 0.01). Analysis of the TCGA database suggested that the level of lnc-TMEM132D-AS1 was significantly higher in NSCLC than in adjacent tissues (P < 0.001), and its high expression was associated with a poor prognosis of the patients. In osimertinib-sensitive cells, overexpression of Lnc-TMEM132D-AS1 obviously promoted cell proliferation, colony formation and migration (P < 0.05), while Lnc-TMEM132D-AS1 knockdown partially restored osimertinib sensitivity of the resistant cells (P < 0.01). Lnc-TMEM132D-AS1 was localized mainly in the cytoplasm, and bioinformatics analysis suggested that hsa-miR-766-5p was its candidate target, and their expression levels were inversely correlated. The target mRNAs of hsa-miR-766-5p were mainly enriched in the Ras signaling pathway.
CONCLUSION
The expression of lnc-TMEM132D-AS1 is significantly upregulated in NSCLC cells with acquired osimertinib resistance, and may serve as a potential biomarker and therapeutic target for osimertinibresistant NSCLC.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Lung Neoplasms/genetics*
;
RNA, Long Noncoding/metabolism*
;
Sincalide/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Movement
;
MicroRNAs/genetics*
;
Gene Expression Regulation, Neoplastic
;
Membrane Proteins/metabolism*
8.Research progress of intelligent reversible drug delivery system
Ke-xin CONG ; Xiao-dan SONG ; Ya-nan SUN ; Chao-xing HE ; Shao-kun YANG ; De-ying CAO ; Jing BAI ; Jia ZHANG ; Bai XIANG
Acta Pharmaceutica Sinica 2023;58(3):483-493
In the research on cancer theranostics, most environment-sensitive drug delivery systems can only achieve unidirectional and irreversible responsive changes under pathological conditions, thereby improving the targeting effect and drug release performance of the delivery system. However, such irreversible changes pose potential safety hazards when the dynamically distributed delivery system returns to the blood circulation or transports to the normal physiological environment. Intelligent reversible drug delivery systems can respond to normal physiological and pathological microenvironments to achieve bidirectional and reversible structural changes. This feature will help to precisely control the drug release of the delivery system, prolong the blood circulation time, improve the targeting efficiency, and avoid the potential safety hazards of the irreversible drug delivery system. In this review, we describe the research progress of intelligent reversible drug delivery system from two main aspects: controlled drug release and prolonged blood circulation time/enhanced cellular internalization of drug.
9.Shenfu Injection alleviates sepsis-associated lung injury by regulating HIF-1α.
Luan-Luan ZHANG ; Ya-Nan ZI ; Ye-Peng ZHANG ; Hui PEI ; Xiang-Yu ZHENG ; Jia-Feng XIE ; Dong XU ; Zhi-Qiang ZHU
China Journal of Chinese Materia Medica 2023;48(23):6492-6499
Shenfu Injection(SFI) is praised for the high efficacy in the treatment of septic shock. However, the precise role of SFI in the treatment of sepsis-associated lung injury is not fully understood. This study investigated the protective effect of SFI on sepsis-associated lung injury by a clinical trial and an animal experiment focusing on the hypoxia-inducing factor-1α(HIF-1α)-mediated mitochondrial autophagy. For the clinical trial, 70 patients with sepsis-associated lung injury treated in the emergency intensive care unit of the First Affiliated Hospital of Zhengzhou University were included. The levels of interleukin(IL)-6 and tumor necrosis factor(TNF)-α were measured on days 1 and 5 for every patient. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to determine the mRNA level of hypoxia inducible factor-1α(HIF-1α) in the peripheral blood mononuclear cells(PBMCs). For the animal experiment, 32 SPF-grade male C57BL/6J mice(5-6 weeks old) were randomized into 4 groups: sham group(n=6), SFI+sham group(n=10), SFI+cecal ligation and puncture(CLP) group(n=10), and CLP group(n=6). The body weight, body temperature, wet/dry weight(W/D) ratio of the lung tissue, and the pathological injury score of the lung tissue were recorded for each mouse. RT-qPCR and Western blot were conducted to determine the expression of HIF-1α, mitochondrial DNA(mt-DNA), and autophagy-related proteins in the lung tissue. The results of the clinical trial revealed that the SFI group had lowered levels of inflammatory markers in the blood and alveolar lavage fluid and elevated level of HIF-1α in the PBMCs. The mice in the SFI group showed recovered body temperature and body weight. lowered TNF-α level in the serum, and decreased W/D ratio of the lung tissue. SFI reduced the inflammatory exudation and improved the alveolar integrity in the lung tissue. Moreover, SFI down-regulated the mtDNA expression and up-regulated the protein levels of mitochondrial transcription factor A(mt-TFA), cytochrome c oxidase Ⅳ(COXⅣ), HIF-1α, and autophagy-related proteins in the lung tissue of the model mice. The findings confirmed that SFI could promote mitophagy to improve mitochondrial function by regulating the expression of HIF-1α.
Humans
;
Male
;
Mice
;
Animals
;
Leukocytes, Mononuclear
;
Mice, Inbred C57BL
;
Lung/metabolism*
;
Acute Lung Injury/drug therapy*
;
Tumor Necrosis Factor-alpha/genetics*
;
Sepsis/genetics*
;
Hypoxia/pathology*
;
Autophagy-Related Proteins
;
Body Weight
;
Drugs, Chinese Herbal

Result Analysis
Print
Save
E-mail