1.Extraction process optimization and quality standard establishment for Jigen Standard Decoction
Guo-Chun YANG ; Ya-Fang YANG ; Su-E XU ; Jin KE ; Ling-Yun CHEN ; An-Guo HOU ; Wen-Bin JIN
Chinese Traditional Patent Medicine 2024;46(6):1773-1781
AIM To optimize the extraction process for Jigen Standard Decoction,and to establish its quality standard.METHODS With soaking time,water addition and first decoction time as influencing factors,comprehensive score for 3,6'-disinapoyl sucrose content and yield rate as an evaluation index,the extraction process was optimized by response surface method on the basis of single factor test.The content and transfer rate of 3,6'-dimustayl sucrose were determined,after which HPLC characteristic chromatograms were established,cluster analysis,principal component analysis and orthogonal partial least squares discriminant analysis were performed.RESULTS The optimal conditions were determined to be 60 min for soaking time,(12+11)times for water addition,and(47+20)min for decoction time,the comprehensive score was 97.98.Fifteen batches of standard decoctions demonstrated the average yield rate and transfer rate of 14.182%and 20.468%,respectively,whose characteristic chromatograms existed six common peaks with the similarities of more than 0.9(except for S4,S8).Various batches of standard decoctions were clustered into two types,three principal components displayed the acumulative variance contribution rate of 91.4%,peaks 2,6 were quality markers.CONCLUSION This precise,stable and reproducible method can be used for the preparation and quality control of Jigen Standard Decoction.
2.A Study on iPSC-Associated Factors in the Generation of Hepatocytes
Delger BAYARSAIKHAN ; Govigerel BAYARSAIKHAN ; Hyun A KANG ; Su Bin LEE ; So Hee HAN ; Teruo OKANO ; Kyungsook KIM ; Bonghee LEE
Tissue Engineering and Regenerative Medicine 2024;21(8):1245-1254
BACKGROUND:
Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes.
METHODS:
This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation.
RESULTS:
Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 * 10 cells/cm of seeding density resulting in good morphology and functionality.
CONCLUSION
This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.
3.A Study on iPSC-Associated Factors in the Generation of Hepatocytes
Delger BAYARSAIKHAN ; Govigerel BAYARSAIKHAN ; Hyun A KANG ; Su Bin LEE ; So Hee HAN ; Teruo OKANO ; Kyungsook KIM ; Bonghee LEE
Tissue Engineering and Regenerative Medicine 2024;21(8):1245-1254
BACKGROUND:
Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes.
METHODS:
This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation.
RESULTS:
Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 * 10 cells/cm of seeding density resulting in good morphology and functionality.
CONCLUSION
This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.
4.A Study on iPSC-Associated Factors in the Generation of Hepatocytes
Delger BAYARSAIKHAN ; Govigerel BAYARSAIKHAN ; Hyun A KANG ; Su Bin LEE ; So Hee HAN ; Teruo OKANO ; Kyungsook KIM ; Bonghee LEE
Tissue Engineering and Regenerative Medicine 2024;21(8):1245-1254
BACKGROUND:
Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes.
METHODS:
This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation.
RESULTS:
Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 * 10 cells/cm of seeding density resulting in good morphology and functionality.
CONCLUSION
This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.
5.A Study on iPSC-Associated Factors in the Generation of Hepatocytes
Delger BAYARSAIKHAN ; Govigerel BAYARSAIKHAN ; Hyun A KANG ; Su Bin LEE ; So Hee HAN ; Teruo OKANO ; Kyungsook KIM ; Bonghee LEE
Tissue Engineering and Regenerative Medicine 2024;21(8):1245-1254
BACKGROUND:
Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes.
METHODS:
This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation.
RESULTS:
Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 * 10 cells/cm of seeding density resulting in good morphology and functionality.
CONCLUSION
This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.
6.A Study on iPSC-Associated Factors in the Generation of Hepatocytes
Delger BAYARSAIKHAN ; Govigerel BAYARSAIKHAN ; Hyun A KANG ; Su Bin LEE ; So Hee HAN ; Teruo OKANO ; Kyungsook KIM ; Bonghee LEE
Tissue Engineering and Regenerative Medicine 2024;21(8):1245-1254
BACKGROUND:
Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes.
METHODS:
This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation.
RESULTS:
Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 * 10 cells/cm of seeding density resulting in good morphology and functionality.
CONCLUSION
This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.
8. Protein phosphorylation involved in psychedelic-induced head-twitch response in rats
Shao-Wen WANG ; Ya-Nan ZHOU ; Shao-Wen WANG ; Ya-Nan ZHOU ; Yi SUN ; Rui-Bin SU
Chinese Pharmacological Bulletin 2023;39(10):1899-1904
Aim To investigate the potential protein post-translational modifications of psychedelic-induced Head-twith response and underling mechanism. Methods Psychedelics LSD, DOM, or Psilocin was administered to rats by intraperitoneal injection to induce head-twitch response, then the most effective dosage was identified to create animal models of head-twitch behavior. Western blot was performed in detecting the protein phosphorylation, acetylation, and ubiquitination in prefrontal cortex of SD rats after 10 min or 30 min injection. Results LSD (0.025 mg • kg~, i. p.), DOM (3 mg•kg
9. Research on mechanism of opioid receptors in pharmacological effects of ketamine
Ya-Nan QIU ; Feng-Hua FU ; Ya-Nan QIU ; Yi SUN ; Rui-Bin SU
Chinese Pharmacological Bulletin 2023;39(6):1019-1022
Ketamine has been used clinically as an analgesic and anesthetic since 1970. Recently, it has been concerned due to its rapid and effective antidepressant effect. However, the psychiatric adverse reactions caused by ketamine such as addiction and hallucination limit its clinical application, yet the mechanism of the adverse reactions is still unclear. At present, it is generally believed that the pharmacological effects of ketamine are mainly mediated by N-methyl-D-aspartate acid (NMDA) receptors, but increasing numbers of research evidences suggest that the opioid receptor also play an important role in the pharmacological effects of ketamine. This review, based on the relevant literature published publicly in the past 20 years, summarizes the mechanisms of opioid receptors in the pharmacological effects of ketamine, such as anesthesia, analgesia, anti-depressant, anti-addiction and addiction, providing reference for revealing the mechanism of ketamine, and making beneficial exploration for solving the clinical side effects of ketamine.
10.Mining Novel Anti-Nocardia Drug Targets Based on Pan-genomics and Subtractive Proteomics
Er-tong LI ; Ya-lin SU ; Wen-bin LIU ; Xiao-bao JIN
Journal of Sun Yat-sen University(Medical Sciences) 2023;44(6):974-982
ObjectiveNocardia is an apathogen that causes opportunistic infections in humans and has a global distribution. In recent years, resistance of Nocardia to commonly used drugs have been observed, highlighting the urgent need for the identification of new drug targets and the development of novel antimicrobial agents against Nocardia. MethodsThirty-one complete genome sequences of Nocardia strains were retrieved from the GenBank database. Pan-genomic analysis was performed using BPGA, and drug target candidates were screened using subtractive proteomics. Homology modeling was employed to predict the 3D structures of target proteins, and potential drugs targeting these proteins were predicted using DrugBank. Molecular docking techniques were utilized to validate the binding activity between the drugs and target proteins. ResultsThe pan-genomic analysis of the 31 Nocardia strains revealed 1 421 core proteins. Fifteen candidate drug target proteins were identified through subtractive proteomics analysis. Among them, the physicochemical properties of the OG1493 protein (such as amino acid count, molecular weight, isoelectric point, grand average of hydropathicity, fat index,and instability index Ⅱ) were found to be most suitable for a drug target protein. Using the DrugBank database, seven compounds, namely Adenosine-5'-Rp-Alpha-Thio-Triphosphate, alpha,beta-Methyleneadenosine 5'-triphosphate, Phosphoaminophosphonic Acid-Adenylate Ester ,Radicicol,2-Hydroxyestradiol, p-Coumaric acid, and Ethylmercurithiosalicylic acid were identified as potential compounds capable of exerting anti-Nocardia effects by targeting this protein. Molecular docking results indicated a strong binding affinity between the target protein and these compounds. The experimental result showed that that Radicicol could be a potential antibacterial drug targeting this particular protein. ConclusionPan-genomic analysis and subtractive proteomics are valuable approaches for mining novel anti-Nocardia drug targets.

Result Analysis
Print
Save
E-mail