1.Network toxicology and its application in studying exogenous chemical toxicity
Yanli LIN ; Zehua TAO ; Zhao XIAO ; Chenxu HU ; Bobo YANG ; Ya WANG ; Rongzhu LU
Journal of Environmental and Occupational Medicine 2025;42(2):238-244
With the continuous development of society, a large number of new chemicals are continuously emerging, which presents a challenge to current risk assessment and safety management of chemicals. Traditional toxicology research methods have certain limitations in quickly, efficiently, and accurately assessing the toxicity of many chemicals, and cannot meet the actual needs. In response to this challenge, computational toxicology that use mathematical and computer models to achieve the prediction of chemical toxicity has emerged. In the meantime, as researchers increasingly pay attention to understanding the interaction mechanisms between exogenous chemical substances and the body from the system level, and multiomics technologies develop rapidly such as genomics, transcriptomics, proteomics, and metabolomics, huge amounts of data have been generated, providing rich information resources for studying the interactions between chemical substances and biological molecules. System toxicology and network toxicology have also developed accordingly. Of these, network toxicology can integrate these multiomics data to construct biomolecular networks, and then quickly predict the key toxicological targets and pathways of chemicals at the molecular level. This paper outlined the concept and development of network toxicology, summarized the main methods and supporting tools of network toxicology research, expounded the application status of network toxicology in studying potential toxicity of exogenous chemicals such as agricultural chemicals, environmental pollutants, industrial chemicals, and foodborne chemicals, and analyzed the development prospects and limitations of network toxicology research. This paper aimed to provide a reference for the application of network toxicology in other fields.
2.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
3.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
4.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
Background:
The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies.
Methods:
MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function.
Results:
Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores.
Conclusion
Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall.
5.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
Background:
The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies.
Methods:
MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function.
Results:
Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores.
Conclusion
Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall.
6.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
Background:
The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies.
Methods:
MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function.
Results:
Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores.
Conclusion
Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall.
7.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
8.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
Background:
The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies.
Methods:
MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function.
Results:
Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores.
Conclusion
Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall.
9.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
10.Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
Ying-Ying CHEN ; Shang-Lin JIANG ; Liang-Hui HUANG ; Ya-Guang ZENG ; Xue-Hua WANG ; Wei ZHENG
Progress in Biochemistry and Biophysics 2025;52(8):2163-2172
ObjectivePrimary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue, ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound (CEUS), face limitations in applicability and objectivity. The primary objective of this study was to develop an advanced, light-weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. MethodsThis retrospective study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN), and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics: area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity (SE), and specificity (SP). ResultsThe evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84. Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification. ConclusionThe 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’ diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.

Result Analysis
Print
Save
E-mail