1.Phenotypic evaluation of Ttc37 knockout mouse as type Ⅰ tricho-hepato-enteric syndrome model
Ming-Ya LI ; Xue-Lin WANG ; Ye WEI ; Pei-Hong YANG ; Lei SUN
Fudan University Journal of Medical Sciences 2024;51(2):249-256
Objective To establish a mouse model of type Ⅰ tricho-hepato-enteric syndrome(THES)induced by Ttc37 deficiency.Methods Ttc37 flox strain was established by site-specifically inserted loxP sites into Ttc37 gene via CRISPR/CAS9 technology.Ubiquitously expressed CAG-Cre was introduced for all-tissue removal of Ttc37 in Ttc37flox/flox;CAG-Cre mice.The knock-out effect was confirmed by fluorescence quantitative PCR and Western blot.Phenotypic evaluations were conducted in 8-week-old mice including hematoxylin-eosin staining of skin,spleen,liver,bladder,and gastrointestinal tract(GI),serum enzyme activity assay of aspartate aminotransferase(AST)and alanine aminotransferase(ALT),measurement of serum hemoglobin level,and ELISA for IgG and IgM level upon antigen immunization.Results Similar to type Ⅰ THES patients,Ttc37flox/flox;CAG-Cre mice exhibited impaired development of hair shaft,epidermis,B cell and eyes,while liver,GI,bladder and serum hemoglobin level seemed normal under unstressed condition.Conclusion A novel mouse model of typeⅠ THES was constructed successfully,which was applicable for pathological study.
2.Latent tuberculosis infection among close contacts of positive etiology pul-monary tuberculosis in Chongqing
Rong-Rong LEI ; Hong-Xia LONG ; Cui-Hong LUO ; Ben-Ju YI ; Xiao-Ling ZHU ; Qing-Ya WANG ; Ting ZHANG ; Cheng-Guo WU ; Ji-Yuan ZHONG
Chinese Journal of Infection Control 2024;23(3):265-270
Objective To investigate the current situation and influencing factors of latent tuberculosis infection(LTBI)among close contacts of positive etiology pulmonary tuberculosis(PTB)patients,provide basis for formula-ting intervention measures for LTBI.Methods A multi-stage stratified cluster random sampling method was used to select close contacts of positive etiology PTB patients from 39 districts and counties in Chongqing City as the study objects.Demographic information was collected by questionnaire survey and the infection of Mycobacterium tuberculosis was detected by interferon gamma release assay(IGRA).The influencing factors of LTBI were analyzed by x2 test and binary logistic regression model.Results A total of 2 591 close contacts were included,the male to female ratio was 0.69∶1,with the mean age of(35.72±16.64)years.1 058 cases of LTBI were detected,Myco-bacterium tuberculosis latent infection rate was 40.83%.Univariate analysis showed that the infection rate was dif-ferent among peoples of different age,body mass index(BMI),occupation,education level,marital status,wheth-er they had chronic disease or major surgery history,whether they lived together with the indicator case,and whether the cumulative contact time with the indicator case ≥250 hours,difference were all statistically significant(all P<0.05);infection rate presented increased trend with the increase of age and BMI(both P<0.001),and decreased trend with the increase of education(P<0.05).Logistic regression analysis showed that age 45-54 years old(OR=1.951,95%CI:1.031-3.693),age 55-64 years old(OR=2.473,95%CI:1.279-4.781),other occupations(OR=0.530,95%CI:0.292-0.964),teachers(OR=0.439,95%CI:0.242-0.794),students(OR=0.445,95%CI:0.233-0.851),junior high school education or below(OR=1.412,95%CI:1.025-1.944),BMI<18.5 kg/m2(OR=0.762,95%CI:0.586-0.991),co-living with indicator cases(OR=1.621,95%CI1.316-1.997)and cumu-lative contact time with indicator cases ≥250 hours(OR=1.292,95%CI:1.083-1.540)were the influential fac-tors for LTBI(all P<0.05).Conclusion The close contacts with positive etiology PTB have a high latent infection rate of Mycobacterium tuberculosis,and it is necessary to pay attention to close contacts of high age,farmers,and frequent contact with patients,and take timely targeted interventions to reduce the risk of occurrence of disease.
3.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell carcinoma treatment
CHEN Hongjun ; LEI Qi ; WANG Zhilin ; ZHONG Xiaowu ; QIU Ya ; LI Lihua
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(3):178-187
Objective:
To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.
Methods:
The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.
Results:
A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.
Conclusion
RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.
4.Loong oil-lyotropic liquid crystals for the treatment of combined radiation and burn injury
Wan-ting GUO ; Xue-li JIA ; Yan LIU ; Ya-dan HU ; Ke WANG ; Lei ZHANG ; Yong ZHANG ; Yi-guang JIN
Acta Pharmaceutica Sinica 2024;59(5):1449-1457
Combined radiation and burn injury (CRBI) is a severe syndrome, which is induced by the simultaneous or successive radiation and burn; but no appropriate clinical therapies are available. Loong oil (LO) is a traditional Chinese medicine oil composed of the oil extracts of cuttlebone, safflower, walnut oil, and rapeseed oil, which has been demonstrated to own anti-radiation and tissue healing functions. In this study, glyceryl monostearate (GMO) was used for the preparation of lyotropic liquid crystals that loaded LO to obtain Loong oil-lyotropic liquid crystals (LOL) for the treatment of skin CRBI. The hexagonal phase structure of LOL was proved by small X-ray scattering (SAXS) analysis with an approximate
5.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
6.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
7.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
8.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
9.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
10.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.


Result Analysis
Print
Save
E-mail