1.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of  Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway. 
		                        		
		                        		
		                        		
		                        	
2.Relationships Between Exercise Components and Social Anxiety Levels Among Chinese College Students
Qi CHENG ; Wenbing YU ; Mingxiao JU ; Duo YANG ; Jiannan FU ; Shilong SONG
Psychiatry Investigation 2025;22(2):196-203
		                        		
		                        			 Objective:
		                        			This study aimed to explore the relationships between various exercise components (frequency, intensity, duration) and social anxiety. 
		                        		
		                        			Methods:
		                        			A sample of 844 college students in China participated in this study. The Physical Activity Rating Scale-3 assessed participants’ daily physical activity. Social anxiety levels were measured using the Liebowitz Social Anxiety Scale. A questionnaire was developed to collect demographic information and examine the relationships between exercise components and social anxiety levels. 
		                        		
		                        			Results:
		                        			One-way analysis of variance revealed significant differences in social anxiety levels across varying physical activity intensities. Specifically, students engaging in high levels of physical activity exhibited the lowest social anxiety. Post hoc analyses identified that exercise frequency F3 (p<0.01), exercise duration D5 (p<0.01), and exercise intensity I3 (p<0.01) were significantly associated with the lowest social anxiety levels. Among these components, regression analysis indicated that exercise duration (p<0.01) had the most substantial impact on social anxiety levels, followed by exercise frequency (p<0.05). In contrast, exercise intensity (p>0.05) did not significantly affect social anxiety levels. 
		                        		
		                        			Conclusion
		                        			The most influential factors associated with decreased social anxiety were: 1) moderate to high exercise intensity, 2) exercise duration of at least one hour, and 3) exercise frequency of at least 1–2 times per week. Among these factors, exercise duration and frequency demonstrated significantly stronger associations with reduced social anxiety. Therefore, it is advisable to prioritize exercise duration and frequency in physical activity programs for college students to reduce social anxiety and achieve more substantial outcomes. 
		                        		
		                        		
		                        		
		                        	
3.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
		                        		
		                        			 Objective:
		                        			Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC). 
		                        		
		                        			Methods:
		                        			We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0. 
		                        		
		                        			Results:
		                        			Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II. 
		                        		
		                        			Conclusion
		                        			A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network. 
		                        		
		                        		
		                        		
		                        	
4.Electrical stimulation induces miR-741-3p to regulate Radil and promote Schwann cell migration
Qing LIU ; Bo GAO ; Xiao YANG ; Yu JIANG ; Pei WANG
Chinese Journal of Tissue Engineering Research 2025;29(19):4038-4043
		                        		
		                        			
		                        			BACKGROUND:More and more animal experiments and clinical studies have confirmed that electrical stimulation can promote the repair of peripheral nerve injury,but the specific mechanism is not yet fully understood. OBJECTIVE:To investigate the effect of electrical stimulation-induced miR-741-3p regulating Radil on Schwann cell migration. METHODS:(1)Twelve male SD rats were randomly divided into electrical stimulation group and control group.The electrical stimulation group received continuous electrical stimulation for 7 days after sciatic nerve compression injury,while the control group was not treated after sciatic nerve compression.The injured nerves were taken on day 7 after operation.The expression difference of miR-741-3p between the two groups was verified by fluorescence in situ hybridization.(2)The target genes of miR-741-3p were predicted by miRDB,TargetScan,and miRWalk databases.(3)Schwann cells were transfected with miR-741-3p mimetic and its control,miR-741-3p inhibitor and its control,Radil siRNA and its control,miR-741-3p inhibitor+Radil siRNA and miR-741-3p inhibitor+siRNA control.The transfection efficiency was detected by RT-PCR.The migration ability of Schwann cells was detected by Transwell chamber. RESULTS AND CONCLUSION:(1)The fluorescence intensity of miR-741-3p in the electrical stimulation group was lower than that in the control group.(2)The results of database prediction showed that 69 genes might be the target genes of miR-741-3p.Radil was one of the predicted target genes,which was mainly involved in cell adhesion and migration.(3)Compared with the miR-741-3p inhibitor control group,the number of Schwann cell migration increased in the miR-741-3p inhibitor group(P<0.05).Compared with the miR-741-3p mimic control group,the number of Schwann cell migration in the miR-741-3p mimic group decreased(P<0.05).Compared with the siRNA control group,the number of Schwann cell migration was decreased in the Radil siRNA group(P<0.05).(4)Compared with miR-741-3p inhibitor control group,the expression level of Radil was increased in miR-741-3p inhibitor group.Compared with miR-741-3p mimic control group,the expression level of Radil was decreased in miR-741-3p mimic group.(5)Compared with miR-741-3p inhibitor+siRNA control group,the number of Schwann cell migration was reduced in miR-741-3p inhibitor+Radil siRNA group(P<0.05).The results showed that electrical stimulation promoted the migration of Schwann cells by down-regulating miR-741-3p and targeting Radil gene.
		                        		
		                        		
		                        		
		                        	
5.Reliability and validity of the Korean version of the Nurses Professional Values Scale-3 for nursing students: a methodological study
Journal of Korean Academy of Nursing 2025;55(1):93-106
		                        		
		                        			 Purpose:
		                        			This study aimed to adapt the Nurses Professional Values Scale-3 (NPVS-3) for Korean nursing students and assess its reliability and validity. 
		                        		
		                        			Methods:
		                        			The NPVS-3 was translated into Korean using forward and back translation with expert review. Data from 206 nursing students at four universities were analyzed to assess content, construct, discriminant, and criterion validity, as well as internal consistency. 
		                        		
		                        			Results:
		                        			The Korean version (NPVS-3K) consisted of 21 items in three subscales: caring (eight items), activism (eight items), and professionalism (five items), explaining 60.9% of the total variance. For convergent validity, standardized coefficients for the items ranged from .56 to .81, construct reliability ranged from .89 to .95, and the average variance extracted ranged from .61 to .72. The model was validated by confirmatory factor analysis (χ2=526.00 [p<.001], χ2/degrees of freedom=2.83, standardized root mean residual=.03, goodness of fit index=.81, comparative fit index=.87, Turker Lewis index=.85). Discriminant validity was confirmed using a multi-trait and multi-item matrix. Criterion validity showed positive correlations between the three NPVS-3K factors and professional identity (factor 1: r=.40, p<.001; factor 2: r=.55, p<.001; factor 3: r=.43, p<.001). Internal consistency, as measured by Cronbach’s α, was .94 overall, with subscale values of .90 for caring, .92 for activism, and .78 for professionalism. 
		                        		
		                        			Conclusion
		                        			The NPVS-3K demonstrated satisfactory validity and reliability, establishing it as a valuable tool for assessing the professional values of Korean nursing students. Additionally, it can aid in developing educational strategies to strengthen these values, although further research is required to confirm its broader applicability. 
		                        		
		                        		
		                        		
		                        	
6.Triglyceride-glucose parameters as predictors of diabetes mellitus incidence in Korean adults: a secondary analysis of a Prospective Cohort Study
Yu Jin PARK ; Miseon SHIN ; Hyun Seon JEON ; Eun Hee YANG
Journal of Korean Academy of Nursing 2025;55(2):205-221
		                        		
		                        			 Purpose:
		                        			This study aimed to evaluate the association between triglyceride-glucose (TyG)–related parameters and the incidence of diabetes mellitus in Korean adults. Data were obtained from the Korean Genome and Epidemiology Study (KoGES). 
		                        		
		                        			Methods:
		                        			This secondary analysis examined data from 6,816 adults aged 40–69 years who participated in the KoGES from 2001 to 2020. TyG–related parameters, including the TyG index, TyG–body mass index (TyG–BMI), TyG–waist circumference (TyG–WC), and TyG–waist-to-height ratio (TyG–WHtR), were assessed. Cox proportional hazards models were employed to determine the association between these parameters and the incidence of diabetes mellitus, with adjustments made for demographic, lifestyle, and health-related characteristics. 
		                        		
		                        			Results:
		                        			Higher levels of all TyG–related parameters were significantly associated with an increased risk of developing diabetes mellitus. Specifically, participants in the highest quartile of the TyG index, TyG–BMI, TyG–WC, and TyG–WHtR exhibited significantly higher hazard ratios for diabetes mellitus incidence compared with those in the lowest quartile (p<.001 for all). Notably, the TyG index demonstrated a stronger predictive value for diabetes mellitus than traditional measures such as the homeostatic model assessment of insulin resistance. 
		                        		
		                        			Conclusion
		                        			TyG–related parameters are robust predictors of diabetes mellitus incidence in Korean adults. These findings support the incorporation of TyG–related measures into clinical settings for the early identification and intervention of high-risk populations. Utilizing these parameters for early diagnosis and preventive strategies may significantly enhance diabetes mellitus management. 
		                        		
		                        		
		                        		
		                        	
7.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
		                        		
		                        			
		                        			ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity. 
		                        		
		                        		
		                        		
		                        	
8.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
		                        		
		                        			
		                        			Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts. 
		                        		
		                        		
		                        		
		                        	
9.Traditional Chinese Medicine Regulates Oxidative Stress to Prevent and Treat Osteoporosis: A Review
Hu YANG ; Yu ZHENG ; Chengming JIA ; Tong WANG ; Guangfei ZHANG ; Yaoyao JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):277-285
		                        		
		                        			
		                        			Osteoporosis is a common bone metabolic disease, which is mainly characterized by the decrease in the number of bone trabeculae and the destruction of bone tissue microstructure, leading to increased bone fragility and fracture risks. This disease is common in postmenopausal women, elderly men, diabetes patients, and obese people. Due to the lack of awareness to prevent bone losses and the limitations of bone mass measurement methods, osteoporosis is only concerned when there are serious complications, which imposes a heavy burden on both patients and medical resources. Oxidative stress refers to the excessive production of highly active molecules such as reactive oxygen species and reactive nitrogen in the body subjected to harmful stimuli, leading to the imbalance between the oxidative and antioxidant systems and causing oxidative damage. Studies have shown that oxidative stress can increase the generation and activity of osteoclasts and inhibit the differentiation of osteoblasts, thus playing a role in the occurrence and development of osteoporosis. Traditional Chinese medicine (TCM) is considered an effective antioxidant that can alleviate oxidative stress-induced osteoporosis by regulating a variety of signaling pathways. Studies have shown that TCM can alleviate oxidative stress and promote bone angiogenesis and osteogenesis by regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), nuclear factor-kappa B, and nuclear factor erythroid 2-related factor (Nrf2) signaling pathways. TCM alleviates oxidative stress and promotes osteogenesis by regulating the Nrf2, PI3K/Akt/mammalian target of rapamycin, and secreted glycoprotein Wnt/β-catenin signaling pathways. In addition, TCM regulates NF-κB, mitogen-activated protein kinase, and receptor activator of nuclear factor kappa B (RANK)/RANK ligand/osteoprotegerin signaling pathway to alleviate excessive bone resorption induced by oxidative stress. This paper systematically summarizes the literature on the prevention and treatment of osteoporosis by TCM or its active ingredients via the above-mentioned signaling pathways to reduce oxidative stress in recent years. It briefs the possible molecular mechanisms of oxidative stress regulation-related signaling pathways to cause osteoporosis. In addition, this paper discusses the effects and mechanisms of TCM on bone angiogenesis, osteogenesis, and bone resorption by reducing oxidative stress through the regulation of related signaling pathways, aiming to provide a theoretical basis for the research and clinical treatment of osteoporosis. 
		                        		
		                        		
		                        		
		                        	
10.Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis
Zhiwei LIU ; Ran YANG ; Hao LIAN ; Yu ZHANG ; Lilun JIN
Laboratory Animal and Comparative Medicine 2025;45(3):259-268
		                        		
		                        			
		                        			ObjectiveTo establish a rat model of osteoarthritis and study the anti-inflammatory effects and mechanisms of fraxetin. MethodsEighteen 8-week-old male SPF-grade SD rats were randomly divided into three groups: Rats in the blank group received a right articular cavity injection of 50 μL of normal saline for 1 week; the model and intervention groups were injected with monosodium iodoacetate (MIA) into the right joint cavity to induce osteoarthritis, while the intervention group subsequently received fraxetin (5 mg·kg-1·d-1) for 1 week. Four weeks after drug intervention, abdominal aortic blood was collected. The animals were then euthanized, and knee joint cartilage were collected. The cartilage samples were stained with hematoxylin-eosin, safranin O-fast green, and toluidine blue for histopathological examination and scoring using the Mankin and OARSI scoring systems. The trabecular bone volume/total volume (Tb.BV/TV), trabecular bone surface density/total volume (Tb.BS/TV), and trabecular number (Tb.N) of each group were compared and analyzed using a micro-CT scanning system. The expression levels of various inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)], and cartilage oligomeric matrix protein (COMP) were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of mitogen-activated protein kinase p38 (p38 MAPK), phosphorylation-p38 MAPK (p-p38 MAPK), c-Jun N-terminal kinase (JNK), and phosphorylation-JNK (p-JNK) were measured by western blotting. ResultsThe staining of cartilage sections of rat knee joints showed that the articular surface defects in the model group were severe, while the cartilage destruction in the intervention group was relatively reduced. Micro-CT results showed that Tb.BV/TV, Tb.BS/TV and Tb.N in the intervention group were significantly higher than those in the model group (P < 0.05); the Mankin score in the model group was significantly higher than that in the blank group (P < 0.05), the Mankin score in the intervention group was significantly lower than that in the model group (P < 0.05); while the OARSI score in the intervention group was significantly lower than that in the model group (P < 0.05). The results of the enzyme-linked immunosorbent assay showed that the serum levels of TNF-α, IL-1β, IL-6, and COMP in the model group were significantly higher than those in the blank group (all P < 0.05), while those in the intervention group were significantly lower than in the model group (P < 0.05). Western blot results showed that the expression levels of p-p38 MAPK and p-JNK in the knee cartilage tissue were significantly lower in the intervention group than in the model group (both P < 0.05), and significantly higher in the model group than in the blank group (both P < 0.05). ConclusionFraxetin may play a therapeutic role in a monosodium iodoacetate-induced rat model of osteoarthritis through the p38 MAPK pathway. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail