1.A Brief Exploration of Endogenous Wind (内风) by Tracing Its Origin and Development
Xiaojin QIU ; Min LI ; Fei YU ; Ruiying SHU ; Dandan DING
Journal of Traditional Chinese Medicine 2025;66(2):197-200
The historical development of endogenous wind (内风) is traced with time as the thread, based on the progression of factors such as syndromes, causes of disease, and pathogenesis. It is believed that the concept of wind syndrome originated in The Inner Canon of Yellow Emperor (《黄帝内经》), encompassing both exogenous wind (外风) and endogenous wind syndrome. Over time, exogenous wind syndrome gradually evolved into mild syndromes and severe syndromes, while endogenous wind syndrome emerged from severe syndromes of exogenous wind. Endogenous wind syndrome has both syndrome and pathogenic attributes, and its theoretical system has gradually become more refined. Based on the theories of ancient and modern medical practitioners, and combining the holistic perspectives with Xiang (象) thinking, it is proposed that endogenous wind has both physiological and pathological distinctions. The physiological endogenous wind refers to the liver's moderate dispersing and regulating function, which helps to distribute qi (气), blood, and body fluids, while pathological endogenous wind arises from abnormal liver dispersal. Therefore, in clinical practice, different treatment methods, such as tonifying, unblocking, and warming, can be applied according to the differentiation of deficiency and excess in the pathogenesis.
2.Relationship between self-management behaviors and time perspective among patients with comorbid diabetes
YU Dandan ; ZHANG Yaping ; XU Huilin ; HE Dandan ; LIANG Tongtong ; YANG Jiali ; LI Jun
Journal of Preventive Medicine 2025;37(2):130-134
Objective:
To examine the relationship between self-management behaviors and time perspective among patients with comorbid diabetes, so as to provide the evidence for improving self-management behaviors among patients with comorbid diabetes.
Methods:
The patients with comorbid diabetes who were registered in the chronic disease health management system of Minhang District, Shanghai Municipality in 2021, followed up regularly, and lived in Meilong Town were recruited. Demographic information and family history of diabetes were collected through questionnaire surveys. Time perspective and self-management behaviors were assessed using the Zimbardo Time Perspective Inventory and Diabetes Self-Management Behavior Scale, respectively. The relationship between self-management behaviors and time perspective was analyzed using a multivariable ordinal logistic regression model.
Results:
A total of 907 patients with comorbid diabetes were enrolled, including 472 males (52.04%) and 435 females (47.96%). There were 652 cases aged 65 years and above, accounting for 71.89%. In terms of the types of time perspective, 280 patients were future-oriented (30.87%), 236 were balanced (26.02%), 162 were sensation-seeking (17.86%), 123 were fatalistic (13.56%), and 106 were negative (11.69%). In terms of the self-management behaviors, 46 patients were good (5.07%), 643 were moderate (70.89%), and 218 were poor (24.04%). Multivariable ordinal logistic regression analysis showed that after adjusting for age, gender, educational level, marital status, occupation status, monthly income, and family history of diabetes, the patients with comorbid diabetes who had a future-oriented time perspective had better self-management behaviors (OR=1.874, 95%CI: 1.204-2.915).
Conclusion
The self-management behaviors among patients with comorbid diabetes are moderate to poor, and patients with a future-oriented time perspective can better engage in self-management behaviors.
3.Clinical and Mechanism of Modified Xiaoyaosan and Its Effective Components in Treatment of Thyroid Diseases: A Review
Shanshan LI ; Yu FU ; Dandan WEI ; Fei WANG ; Mengjiao XU ; Ting WANG ; Shuxun YAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):302-310
Thyroid diseases are common clinical endocrine disorders, and their pathogenesis is generally considered to be closely related to genetic predisposition factors, immune system disorders, hormone levels, etc. Xiaoyaosan is widely used in the treatment of various thyroid diseases with excellent effects. This study summarized the relevant literature on the treatment of thyroid diseases with modified Xiaoyaosan prescriptions and their active ingredients from aspects such as theoretical analysis, clinical research, and mechanism research. Theoretical analysis revealed that Xiaoyaosan could not only disperse stagnated liver qi but also replenish deficient spleen Qi, which was consistent with the etiology and pathogenesis of thyroid diseases. Clinical studies found that Xiaoyaosan and its modified prescriptions could be widely used in the treatment of multiple thyroid diseases, such as hyperthyroidism, Hashimoto's thyroiditis, and thyroid nodules. Both the use of modified Xiaoyaosan alone and in combination with medications such as methimazole, propylthiouracil, and euthyrox could effectively improve patients' clinical symptoms. In the mechanism research, this study discovered that the whole formula of Xiaoyaosan and its modified prescriptions could inhibit inflammatory reactions, regulate immune balance, and delay liver damage during the treatment of thyroid diseases. The research on Xiaoyaosan for treating thyroid diseases mainly focused on thyroid cancer, autoimmune thyroiditis, hyperthyroidism, and hypothyroidism. The mechanisms of action mainly involved promoting cell apoptosis, inhibiting cell proliferation and migration, arresting the cell cycle, and regulating thyroid hormone levels. In conclusion, this study systematically combs and summarizes the research status of Xiaoyaosan in treating thyroid diseases through literature retrieval, aiming to provide new perspectives and new ideas for the prevention and treatment of thyroid diseases with traditional Chinese medicine.
4.Development of classification and grading performance evaluation indicators for public health staff in district CDCs based on job competencies
Xiaohua LIU ; Dandan YU ; Huilin XU ; Dandan HE ; Yizhou CAI ; Nian LIU ; Linjuan DONG ; Xiaoli XU
Shanghai Journal of Preventive Medicine 2025;37(1):84-88
ObjectiveTo explore the establishment of performance assessment indicators for the classification and grading of public health staff in district-level Centers for Disease Control and Prevention (CDCs), and to provide a basis for such evaluations. MethodsThrough literature review and group interviews, performance evaluation indicators were developed based on competency evaluation. Experts were invited to evaluate the weight of performance evaluation indicators for public health staff from different categories, with the average value used to represent the weight of each indicator. ResultsTwenty-nine experts from universities in Shanghai, municipal CDCs, and district CDCs participated, yielding an expert authority coefficient of 0.86. The performance evaluation indicators for department managers were categorized into three levels, with 4 indicators at the primary level, 16 indicators at the secondary level, and 42 indicators at the tertiary level, while those for general staff included 4 primary indicators, 15 secondary indicators, and 36 tertiary indicators. Significant differences were observed in the weight coefficients of the primary indicators (internal operations, professional work, and learning and growth) between department managers and general staff. The top three secondary indicators for department managers were department management, monitoring and prevention, and level of expertise. For mid-level and senior staff, the top three secondary indicators were monitoring and prevention, level of expertise, and research work. The top three secondary indicators for junior staff were monitoring and prevention, professional expertise, and professional attitude. No significant statistical differences were found among tertiary indicators. ConclusionThe developed performance evaluation indicators are reliable. Staff at different levels and classifications should be evaluated using different performance evaluation standards to accurately reflect individual performance and contributions.
5.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
6.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
7.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
8.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
9.Optimization of particle forming process and quality evaluation of Yindan huoxue tongyu granules
Dandan WANG ; Xueping CHEN ; Shuxian BAI ; Zuomin WU ; Jingyuan DONG ; Xiaotao YU
China Pharmacy 2025;36(11):1329-1334
OBJECTIVE To optimize the forming process of Yindan huoxue tongyu granules, and evaluate the quality of the granules. METHODS Taking forming rate, angle of repose, moisture, moisture absorption rate and dissolution rate as indexes, single factor experiment combined with Plackett-Burman design was adopted to screen key process parameters; analytic hierarchy process combined with entropy weight method and Box-Behnken response surface method were used to optimize the molding process of Yindan huoxue tongyu granules, and the forming process was verified. The relative homogeneity index, bulk density, vibration density, Hausner ratio, angle of repose, moisture and hygroscopicity were used as secondary physical indexes to establish the physical fingerprints of 10 batches of Yindan huoxue tongyu granules to evaluate particle quality consistency. RESULTS The optimal molding process of Yindan huoxue tongyu granules was as follows: mannitol as the fixed excipient, the drug-assisted ratio was 1∶1(m/m) and the drying time was 1 h; 90% ethanol was used as wetting agent and the amount of it was 32%, the drying temperature was 70 ℃. The results of validation tests showed that the average comprehensive score was 97.45, which was close to the predicted value of 97.18. The similarities between the physical fingerprints of 10 batches of Yindan huoxue tongyu granules prepared by the optimal molding process and the reference physical fingerprint were all higher than 0.99. CONCLUSIONS The molding process is stable and feasible, and the quality of Yindan huoxue tongyu granules produced is stable and controllable.
10.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.


Result Analysis
Print
Save
E-mail