2.Spatial distribution characteristics of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020.
Y ZHOU ; L TANG ; Y TONG ; J HUANG ; J WANG ; Y ZHANG ; H JIANG ; N XU ; Y GONG ; J YIN ; Q JIANG ; J ZHOU ; Y ZHOU
Chinese Journal of Schistosomiasis Control 2023;35(5):444-450
OBJECTIVE:
To investigate the spatial distribution characteristics of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody, and to examine the correlation between the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020, so as to provide insights into advanced schistosomiais control in the province.
METHODS:
The epidemiological data of schistosomiasis in Hunan Province in 2020 were collected, including number of permanent residents in survey villages, number of advanced schistosomiasis patients, number of residents receiving serological tests and number of residents seropositive for anti-Schistosoma antibody, and the prevalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody were descriptively analyzed. Village-based spatial distribution characteristics of prevalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody were identified in Hunan Province in 2020, and the correlation between the revalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody was examined using Spearman correlation analysis.
RESULTS:
The prevalence of advanced schistosomiasis was 0 to 2.72% and the seroprevalence of anti-Schistosoma antibody was 0 to 20.25% in 1 153 schistosomiasis-endemic villages in Hunan Province in 2020. Spatial clusters were identified in both the prevalence of advanced schistosomiasis (global Moran's I = 0.416, P < 0.01) and the seroprevalence of anti-Schistosoma antibody (global Moran's I = 0.711, P < 0.01) in Hunan Province. Local spatial autocorrelation analysis identified 98 schistosomiasis-endemic villages with high-high clusters of the prevalence of advanced schistosomiasis, 134 endemic villages with high-high clusters of the seroprevalence of anti-Schistosoma antibody and 36 endemic villages with high-high clusters of both the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province. In addition, spearman correlation analysis showed a positive correlation between the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody (rs = 0.235, P < 0.05).
CONCLUSIONS
There were spatial clusters of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020, which were predominantly located in areas neighboring the Dongting Lake. These clusters should be given a high priority in the schistosomiasis control programs.
Animals
;
Humans
;
Prevalence
;
Seroepidemiologic Studies
;
Schistosomiasis/epidemiology*
;
Schistosoma
;
Spatial Analysis
;
Antibodies, Helminth
;
China/epidemiology*
3.Molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against Oncomelania hupensis in hilly regions.
J HE ; Y ZHANG ; Z BAO ; S GUO ; C CAO ; C DU ; J CHA ; J SUN ; Y DONG ; J XU ; S LI ; X ZHOU
Chinese Journal of Schistosomiasis Control 2023;35(5):451-457
OBJECTIVE:
To establish a snail control approach for spraying chemicals with drones against Oncomelania hupensis in complex snail habitats in hilly regions, and to evaluate its molluscicidal effect.
METHODS:
The protocol for evaluating the activity of spraying chemical molluscicides with drones against O. hupensis snails was formulated based on expert consultation and literature review. In August 2022, a pretest was conducted in a hillside field environment (12 000 m2) north of Dafengji Village, Dacang Township, Weishan County, Yunnan Province, which was assigned into four groups, of no less than 3 000 m2 in each group. In Group A, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with drones at a dose of 40 g/m2, and in Group B, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with drones at a dose of 40 g/m2, while in Group C, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with knapsack sprayers at a dose of 40 g/m2, and in Group D, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with knapsack sprayers at a dose of 40 g/m2. Then, each group was equally divided into six sections according to land area, with Section 1 for baseline surveys and sections 2 to 6 for snail surveys after chemical treatment. Snail surveys were conducted prior to chemical treatment and 1, 3, 5, 7 days post-treatment, and the mortality and corrected mortality of snails, density of living snails and costs of molluscicidal treatment were calculated in each group.
RESULTS:
The mortality and corrected mortality of snails were 69.49%, 69.09%, 53.57% and 83.48%, and 68.58%, 68.17%, 52.19% and 82.99% in groups A, B, C and D 14 days post-treatment, and the density of living snails reduced by 58.40%, 63.94%, 68.91% and 83.25% 14 days post-treatment relative to pre-treatment in four groups, respectively. The median concentrations of chemical molluscicides were 37.08, 35.42, 42.50 g/m2 and 56.25 g/m2 in groups A, B, C and D, and the gross costs of chemical treatment were 0.93, 1.50, 0.46 Yuan per m2 and 1.03 Yuan per m2 in groups A, B, C and D, respectively.
CONCLUSIONS
The molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against O. hupensis snails is superior to manual chemical treatment without environmental cleaning, and chemical treatment with drones and manual chemical treatment show comparable molluscicidal effects following environmental cleaning in hilly regions. The cost of chemical treatment with drones is slightly higher than manual chemical treatment regardless of environmental cleaning. Spraying 5% niclosamide ethanolamine salt granules with drones is recommended in complex settings with difficulty in environmental cleaning to improve the molluscicidal activity and efficiency against O. hupensis snails.
Niclosamide/pharmacology*
;
Ethanolamine/pharmacology*
;
Unmanned Aerial Devices
;
China
;
Molluscacides/pharmacology*
;
Ethanolamines
4.2021 Asian Pacific Society of Cardiology Consensus Recommendations on the use of P2Y12 receptor antagonists in the Asia-Pacific Region: Special populations.
W E I C H I E H T A N TAN ; P C H E W CHEW ; L A M T S U I TSUI ; T A N TAN ; D U P L Y A K O V DUPLYAKOV ; H A M M O U D E H HAMMOUDEH ; Bo ZHANG ; Yi LI ; Kai XU ; J O N G ONG ; Doni FIRMAN ; G A M R A GAMRA ; A L M A H M E E D ALMAHMEED ; D A L A L DALAL ; T A N TAN ; S T E G STEG ; N N G U Y E N NGUYEN ; A K O AKO ; A L S U W A I D I SUWAIDI ; C H A N CHAN ; S O B H Y SOBHY ; S H E H A B SHEHAB ; B U D D H A R I BUDDHARI ; Zu Lv WANG ; Y E A N Y I P F O N G FONG ; K A R A D A G KARADAG ; K I M KIM ; B A B E R BABER ; T A N G C H I N CHIN ; Ya Ling HAN
Chinese Journal of Cardiology 2023;51(1):19-31
8.The application of the non-woven fabric and filter paper "sandwich" fixation method in preventing the separation of the mucosal layer and muscular layer in mouse colon histopathological sections.
L SHEN ; Y T LI ; M Y XU ; G Y LIU ; X W ZHANG ; Y CHENG ; G Q ZHU ; M ZHANG ; L WANG ; X F ZHANG ; L G ZUO ; Z J GENG ; J LI ; Y Y WANG ; X SONG
Chinese Journal of Pathology 2023;52(10):1040-1043
10.Pulmonary anaplastic lymphoma kinase positive histiocytosis: report of a case.
W M XU ; Z R GAO ; X LI ; Y JIANG ; Q FENG ; L W RUAN ; Y Y WANG
Chinese Journal of Pathology 2023;52(11):1168-1170

Result Analysis
Print
Save
E-mail