6.Next-Generation Frozen Elephant Trunk Technique in the Era of Precision Medicine
Suk-Won SONG ; Ha LEE ; Myeong Su KIM ; Randolph Hung Leung WONG ; Jacky Yan Kit HO ; Wilson Y. SZETO ; Heinz JAKOB
Journal of Chest Surgery 2024;57(5):419-429
The frozen elephant trunk (FET) technique can be applied to extensive aortic pathology, including lesions in the aortic arch and proximal descending thoracic aorta. FET is useful for tear-oriented surgery in dissections, managing malperfusion syndrome, and promoting positive aortic remodeling. Despite these benefits, complications such as distal stent-induced new entry and spinal cord ischemia can pose serious problems with the FET technique. To prevent these complications, careful sizing and planning of the FET are crucial. Additionally, since the FET technique involves total arch replacement, meticulous surgical skills are essential, particularly for young surgeons. In this article, we propose several techniques to simplify surgical procedures, which may lead to better outcomes for patients with extensive aortic pathology. In the era of precision medicine, the next-generation FET device could facilitate the treatment of complex aortic diseases through a patient-tailored approach.
8.Malignant peripheral nerve sheath tumor: a clinicopathological analysis.
W PENG ; Q X GONG ; Q H FAN ; Y LIU ; G X SONG ; Y Z WEI
Chinese Journal of Pathology 2023;52(9):924-930
Objective: To investigate the clinicopathological, immunophenotypic, and genetic features of malignant peripheral nerve sheath tumor (MPNST). Methods: Twenty-three cases of MPNST were diagnosed at the Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University), China, between January 2012 and December 2022 and thus included in the study. EnVision immunostaining and next-generation sequencing (NGS) were used to examine their immunophenotypical characteristics and genomic aberrations, respectively. Results: There were 10 males and 13 females, with an age range of 11 to 79 years (median 36 years), including 14 cases of neurofibromatosis type I-associated MPNST and 9 cases of sporadic MPNST. The tumors were located in extremities (7 cases), trunk (4 cases), neck and shoulder (3 cases), chest cavity (3 cases), paraspinal area (2 cases), abdominal cavity (2 cases), retroperitoneum (1 case), and pelvic cavity (1 case). Morphologically, the tumors were composed of dense spindle cells arranged in fascicles. Periphery neurofibroma-like pattern was found in 73.9% (17/23) of the cases. Under low magnification, alternating hypercellular and hypocellular areas resembled marbled appearance. Under high power, the tumor cell nuclei were irregular, presenting with oval, conical, comma-like, bullet-like or wavy contour. In 7 cases, the tumor cells demonstrated marked cytological pleomorphism and rare giant tumor cells. The mitotic figures were commonly not less than 3/10 HPF, and geographic necrosis was often noted. Immunohistochemically, tumor cells were positive for S-100 (14/23, 60.9%) and SOX10 (11/23, 47.8%). The loss of the CD34-positive fibroblastic network encountered in neurofibromas was observed in 14/17 of the MPNST cases. The loss of H3K27me3 expression was observed in 82.6% (19/23) of the cases. Moreover, SDHA and SDHB losses were presented in one case. NGS revealed that NF1 gene loss of function (germline or somatic) were found in all 5 cases tested. Furthermore, four cases accompanied with somatic mutations of SUZ12 gene and half of them had somatic mutations of TP53 gene, while one case with germline mutation in SDHA gene and somatic mutations in FAT1, BRAF, and KRAS genes. Available clinical follow-up was obtained in 19 cases and ranged from 1 to 67 months. Four patients died of the disease, all of whom had the clinical history of neurofibromatosis type Ⅰ. Conclusions: MPNST is difficult to be differentiated from a variety of spindle cell tumors due to its wide spectrum of histological morphology and complex genetic changes. H3K27me3 is a useful diagnostic marker, while the loss of CD34 positive fibroblastic network can also be a diagnostic feature of MPNST. NF1 gene inactivation mutations and complete loss of PRC2 activity are the common molecular diagnostic features, but other less commonly recurred genomic aberrations might also contribute to the MPNST pathogenesis.
Female
;
Male
;
Humans
;
Child
;
Adolescent
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Neurofibrosarcoma
;
Neurofibromatosis 1
;
Histones
;
Genes, p53
;
Nerve Sheath Neoplasms
9.The application of the non-woven fabric and filter paper "sandwich" fixation method in preventing the separation of the mucosal layer and muscular layer in mouse colon histopathological sections.
L SHEN ; Y T LI ; M Y XU ; G Y LIU ; X W ZHANG ; Y CHENG ; G Q ZHU ; M ZHANG ; L WANG ; X F ZHANG ; L G ZUO ; Z J GENG ; J LI ; Y Y WANG ; X SONG
Chinese Journal of Pathology 2023;52(10):1040-1043
10.Application and evaluation of artificial intelligence TPS-assisted cytologic screening system in urine exfoliative cytology.
L ZHU ; M L JIN ; S R HE ; H M XU ; J W HUANG ; L F KONG ; D H LI ; J X HU ; X Y WANG ; Y W JIN ; H HE ; X Y WANG ; Y Y SONG ; X Q WANG ; Z M YANG ; A X HU
Chinese Journal of Pathology 2023;52(12):1223-1229
Objective: To explore the application of manual screening collaborated with the Artificial Intelligence TPS-Assisted Cytologic Screening System in urinary exfoliative cytology and its clinical values. Methods: A total of 3 033 urine exfoliated cytology samples were collected at the Henan People's Hospital, Capital Medical University, Beijing, China. Liquid-based thin-layer cytology was prepared. The slides were manually read under the microscope and digitally presented using a scanner. The intelligent identification and analysis were carried out using an artificial intelligence TPS assisted screening system. The Paris Report Classification System of Urinary Exfoliated Cytology 2022 was used as the evaluation standard. Atypical urothelial cells and even higher grade lesions were considered as positive when evaluating the recognition sensitivity, specificity, and diagnostic accuracy of artificial intelligence-assisted screening systems and human-machine collaborative cytologic screening methods in urine exfoliative cytology. Among the collected cases, there were also 1 100 pathological tissue controls. Results: The accuracy, sensitivity and specificity of the AI-assisted cytologic screening system were 77.18%, 90.79% and 69.49%; those of human-machine coordination method were 92.89%, 99.63% and 89.09%, respectively. Compared with the histopathological results, the accuracy, sensitivity and specificity of manual reading were 79.82%, 74.20% and 95.80%, respectively, while those of AI-assisted cytologic screening system were 93.45%, 93.73% and 92.66%, respectively. The accuracy, sensitivity and specificity of human-machine coordination method were 95.36%, 95.21% and 95.80%, respectively. Both cytological and histological controls showed that human-machine coordination review method had higher diagnostic accuracy and sensitivity, and lower false negative rates. Conclusions: The artificial intelligence TPS assisted cytologic screening system has achieved acceptable accuracy in urine exfoliation cytologic screening. The combination of manual screening and artificial intelligence TPS assisted screening system can effectively improve the sensitivity and accuracy of cytologic screening and reduce the risk of misdiagnosis.
Humans
;
Artificial Intelligence
;
Urothelium/pathology*
;
Cytodiagnosis
;
Epithelial Cells/pathology*
;
Sensitivity and Specificity
;
Urologic Neoplasms/urine*

Result Analysis
Print
Save
E-mail