1.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
2.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
3.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
4.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
5.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
6.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
7.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
8.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
9.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
10.A multi-center study on evaluation of leukocyte differential performance by an artificial intelligence-based Digital Cell Morphology Analyzer
Haoqin JIANG ; Wei CHEN ; Jun HE ; Hong JIANG ; Dandan LIU ; Min LIU ; Mianyang LI ; Zhigang MAO ; Yuling PAN ; Chenxue QU ; Linlin QU ; Dehua SUN ; Ziyong SUN ; Jianbiao WANG ; Wenjing WU ; Xuefeng WANG ; Wei XU ; Ying XING ; Chi ZHANG ; Lei ZHENG ; Shihong ZHANG ; Ming GUAN
Chinese Journal of Laboratory Medicine 2023;46(3):265-273
Objective:To evaluate the performance of an artificial intelligent (AI)-based automated digital cell morphology analyzer (hereinafter referred as AI morphology analyzer) in detecting peripheral white blood cells (WBCs).Methods:A multi-center study. 1. A total of 3010 venous blood samples were collected from 11 tertiary hospitals nationwide, and 14 types of WBCs were analyzed with the AI morphology analyzers. The pre-classification results were compared with the post-classification results reviewed by senior morphological experts in evaluate the accuracy, sensitivity, specificity, and agreement of the AI morphology analyzers on the WBC pre-classification. 2. 400 blood samples (no less than 50% of the samples with abnormal WBCs after pre-classification and manual review) were selected from 3 010 samples, and the morphologists conducted manual microscopic examinations to differentiate different types of WBCs. The correlation between the post-classification and the manual microscopic examination results was analyzed. 3. Blood samples of patients diagnosed with lymphoma, acute lymphoblastic leukemia, acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasms were selected from the 3 010 blood samples. The performance of the AI morphology analyzers in these five hematological malignancies was evaluated by comparing the pre-classification and post-classification results. Cohen′s kappa test was used to analyze the consistency of WBC pre-classification and expert audit results, and Passing-Bablock regression analysis was used for comparison test, and accuracy, sensitivity, specificity, and agreement were calculated according to the formula.Results:1. AI morphology analyzers can pre-classify 14 types of WBCs and nucleated red blood cells. Compared with the post-classification results reviewed by senior morphological experts, the pre-classification accuracy of total WBCs reached 97.97%, of which the pre-classification accuracies of normal WBCs and abnormal WBCs were more than 96% and 87%, respectively. 2. The post-classification results reviewed by senior morphological experts correlated well with the manual differential results for all types of WBCs and nucleated red blood cells (neutrophils, lymphocytes, monocytes, eosinophils, basophils, immature granulocytes, blast cells, nucleated erythrocytes and malignant cells r>0.90 respectively, reactive lymphocytes r=0.85). With reference, the positive smear of abnormal cell types defined by The International Consensus Group for Hematology, the AI morphology analyzer has the similar screening ability for abnormal WBC samples as the manual microscopic examination. 3. For the blood samples with malignant hematologic diseases, the AI morphology analyzers showed accuracies higher than 84% on blast cells pre-classification, and the sensitivities were higher than 94%. In acute myeloid leukemia, the sensitivity of abnormal promyelocytes pre-classification exceeded 95%. Conclusion:The AI morphology analyzer showed high pre-classification accuracies and sensitivities on all types of leukocytes in peripheral blood when comparing with the post-classification results reviewed by experts. The post-classification results also showed a good correlation with the manual differential results. The AI morphology analyzer provides an efficient adjunctive white blood cell detection method for screening malignant hematological diseases.

Result Analysis
Print
Save
E-mail