1.Study on Synthesis and Antioxidant Activities in Vitro of Curcumin Pyrazole Derivative
Hua-Jun ZHANG ; Can-Ming LI ; Qin-Xue SUI ; Mei-Qi ZHAN ; Jing GONG ; Li-Ping ZHU ; Tao WANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(9):2452-2456
Objective To construct curcumin pyrazole derivative by the reaction of diketone of curcumin and benzylhydrazine based on the above structure-activity relationship,and to explore its antioxidant activity to provide experimental basis for the development of curcumin antioxidant derivative.Methods Curcumin-N-substituted pyrazole derivative was synthesized from curcumin and benzylhydrazine.The structures of the derivative were confirmed by infrared spectroscopy(IR),nuclear magnetic resonance spectroscopy(1H-NMR,13C-NMR)and LC-MS.The antioxidant activity in vitro of the derivative was evaluated by determination of curcumin and its pyrazole derivative scavenging ability for 2,2-diphenyl-1-picrylhydrazyl(DPPH)free radical and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid(ABTS)free radical.Results Curcumin pyrazole derivative was successfully synthesized.Curcumin and its pyrazole derivative showed good free radical scavenging effects in the range of 4.6-73.6,6.25-100 μg·mL-1,respectively,with a significant dose-effect relationship.The half-maximal inhibition(IC50)values of curcumin and its pyrazole derivatives determined by DPPH method were 14.24,40.37 μg·mL-1,respectively,while the IC50 values of curcumin and its pyrazole derivatives determined by ABTS method were 36.65,19.26 μg·mL-1,respectively.Conclusion The antioxidant activity of β-dione of curcumin was retained through the substitution of the pyrazole ring,and the curcumin pyrazole derivative deserves further investigation as a potential antioxidant.
2.Research progress of inducing ferroptosis of cancer stem cells against colorectal cancer
Li-Na GONG ; Meng-Ling YUAN ; Xue-Ying CHENG ; Chen-Yang XU ; Jun PAN ; Qiu-Tong CHEN ; Ling WANG ; Zi-Li ZHANG ; Mei GUO
Chinese Pharmacological Bulletin 2024;40(6):1030-1034
Cancer stem cell(CSC)are the"seed"cells in the occurrence,development,metastasis and recurrence of colorectal cancer.Targeted killing of CSC provides a new target for anti-colorectal cancer therapy.Ferroptosis is an iron-dependent cell death mode due to the abnormal accumulation of intracellular i-ron ions,which results in the massive reactive oxygen species(ROS)and lipid peroxides,leading to cell death.Studies have shown that cancer stem cells are more enriched in iron ions than non-CSC,which provides a new perspective for targeting ferropto-sis in cancer stem cells against colorectal cancer.This article re-views the research progress of inducing CSC ferroptosis in the treatment of colorectal cancer,such as targeted regulation of SLC7A11 expression in CSC,chelating iron in CSC lysosomes,targeting CSC phenotypic plasticity,reversing CSC iron homeo-stasis,and targeting CSC lipid droplet metabolism induce CSC ferroptosis,which provides new ideas for anti-tumor therapy.
3.Internal iliac artery ligation as a damage control method in hemodynamically unstable pelvic fractures: A systematic review of the literature
Hui LI ; Tao AI ; Guang-Bin HUANG ; Jun YANG ; Gong-Bin WEI ; Jin-Mou GAO ; Ping HE ; Xue-Mei CAO ; Ding-Yuan DU
Chinese Journal of Traumatology 2024;27(5):288-294
Purpose::Internal iliac artery ligation (IIAL) has been used as a damage control procedure to treat hemodynamically unstable pelvic fracture for many years. However, there is ongoing debate regarding the effectiveness and safety of this hemostatic method. Therefore, we performed a systematic literature review to assess the efficacy and safety of IIAL for pelvic fracture hemostasis.Methods::Three major databases, PubMed, Embase, and Google Scholar, were searched to screen eligible original studies published in English journals. Two reviewers independently read the titles, abstracts, and full texts of all literature. Articles were included if they reported the use and effects of IIAL.Results::A total of 171 articles were initially identified, with 22 fully meeting the inclusion criteria. Among the analyzed cases, up to 66.7% of patients had associated abdominal and pelvic organ injuries, with the urethra being the most frequently injured organ, followed by the bowel. The outcomes of IIAL for achieving hemostasis in pelvic fractures were found to be satisfactory, with an effective rate of 80%. Hemorrhagic shock was the leading cause of death, followed by craniocerebral injury. Notably, no reports of ischemic complications involving the pelvic organs due to IIAL were found.Conclusion::IIAL has a good effect in treating hemodynamically unstable pelvic fracture without the risk of pelvic organ ischemia. This procedure should be considered a priority for hemodynamically unstable pelvic fracture patients with abdominal organ injuries.
4.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
5.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
6.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
7.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
8.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
9.PD-1 inhibitor plus anlotinib for metastatic castration-resistant prostate cancer: a real-world study.
Xin-Xing DU ; Yan-Hao DONG ; Han-Jing ZHU ; Xiao-Chen FEI ; Yi-Ming GONG ; Bin-Bin XIA ; Fan WU ; Jia-Yi WANG ; Jia-Zhou LIU ; Lian-Cheng FAN ; Yan-Qing WANG ; Liang DONG ; Yin-Jie ZHU ; Jia-Hua PAN ; Bai-Jun DONG ; Wei XUE
Asian Journal of Andrology 2023;25(2):179-183
Management and treatment of terminal metastatic castration-resistant prostate cancer (mCRPC) remains heavily debated. We sought to investigate the efficacy of programmed cell death 1 (PD-1) inhibitor plus anlotinib as a potential solution for terminal mCRPC and further evaluate the association of genomic characteristics with efficacy outcomes. We conducted a retrospective real-world study of 25 mCRPC patients who received PD-1 inhibitor plus anlotinib after the progression to standard treatments. The clinical information was extracted from the electronic medical records and 22 patients had targeted circulating tumor DNA (ctDNA) next-generation sequencing. Statistical analysis showed that 6 (24.0%) patients experienced prostate-specific antigen (PSA) response and 11 (44.0%) patients experienced PSA reduction. The relationship between ctDNA findings and outcomes was also analyzed. DNA-damage repair (DDR) pathways and homologous recombination repair (HRR) pathway defects indicated a comparatively longer PSA-progression-free survival (PSA-PFS; 2.5 months vs 1.2 months, P = 0.027; 3.3 months vs 1.2 months, P = 0.017; respectively). This study introduces the PD-1 inhibitor plus anlotinib as a late-line therapeutic strategy for terminal mCRPC. PD-1 inhibitor plus anlotinib may be a new treatment choice for terminal mCRPC patients with DDR or HRR pathway defects and requires further investigation.
Male
;
Humans
;
Prostate-Specific Antigen
;
Treatment Outcome
;
Prostatic Neoplasms, Castration-Resistant/drug therapy*
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Retrospective Studies
10.Based on plasma metabonomics and network analysis to research the mechanisms of Chaigui granules for treating depression
De-hua HUANG ; Li-wen WANG ; Wen-xia GONG ; Jun-sheng TIAN ; Xiao-xia GAO ; Xue-mei QIN ; Guan-hua DU ; Yu-zhi ZHOU
Acta Pharmaceutica Sinica 2022;57(5):1420-1428
The purpose of this study was to systematically analyze the antidepressant mechanism of Chaigui granules from the perspective of biological metabolic network by using integrated metabolomics and biological network analysis tools. The model of chronic unpredictable mild stress (CUMS) depression rat was established, and LC-MS-based plasma metabolomics was used to identify the key metabolites and analyze metabolic pathways underlying the antidepressant effects of Chaigui Granules. The key metabolites regulated by Chaigui granules was integrated with biological network analysis tools to further focus on the key metabolic pathways and explore the potential targets of the antidepressant effect of Chaigui granules. The results showed that there were significant differences in the plasma levels of 20 metabolites in the model group compared with the control group (

Result Analysis
Print
Save
E-mail