1.The Role of NEAT1 in Bone and Cartilage Metabolism and Bone Diseases
Rui-Ming WEN ; Rui-Qi HUANG ; Yi-Xing CHANG ; Ke XU ; Xue-Jie YI
Progress in Biochemistry and Biophysics 2025;52(4):930-945
In the process of maintaining the steady state of bone tissue, the transcription network and signal pathway of the body play a vital role. These complex regulatory mechanisms need precise coordination to ensure the balance between bone formation and bone absorption. Once this balance is broken, it may lead to pathological changes of bone and cartilage, and then lead to various bone diseases. Therefore, it is of great significance to understand these regulatory mechanisms for the prevention and treatment of bone diseases. In recent years, with the deepening of research, more and more lncRNA has been found to be closely related to bone health. Among them, nuclear paraspeckle assembly transcript 1 (NEAT1), as an extremely abundant RNA molecule in mammalian nuclei, has attracted extensive attention. NEAT1 is mainly transcribed from a specific site in human chromosome 11 by RNA polymerase II (RNaseP), which can form two different subtypes NEAT1_1 and NEAT1_2. These two subtypes are different in intracellular distribution and function, but they participate in many biological processes together. Studies have shown that NEAT1 plays a specific role in the process of cell growth and stress response. For example, it can regulate the development of osteoblasts (OB), osteoclasts (OC) and chondrocytes by balancing the differentiation of bone marrow mesenchymal stem cells (BMSCs), thus maintaining the steady state of bone metabolism. This discovery reveals the important role of NEAT1 in bone development and remodeling. In addition, NEAT1 is closely related to a variety of bone diseases. In patients with bone diseases such as osteoporosis (OP), osteoarthritis (OA) and osteosarcoma (OS), the expression level of NEAT1 is different. These differential expressions may be closely related to the pathogenesis and progression of bone diseases. By regulating the level of NEAT1, it can affect a variety of signal transduction pathways, and then affect the development of bone diseases. For example, some studies show that by regulating the expression level of NEAT1, the activity of osteoclasts can be inhibited, and the proliferation and differentiation of osteoblasts can be promoted, thus improving the symptoms of osteoporosis. It is worth noting that NEAT1 can also be used as a key sensor for the prevention and treatment of bone diseases. When exercising or receiving some natural products, the expression level of NEAT1 will change, thus reflecting the response of bones to external stimuli. This feature makes NEAT1 an important target for studying the prevention and treatment strategies of bone diseases. However, although the role of NEAT1 in bone biology and bone diseases has been initially recognized, its specific mechanism and regulatory relationship are still controversial. For example, the expression level, mode of action and interaction with other molecules of NEAT1 in different bone diseases still need further in-depth study. This paper reviews the role of NEAT1 in maintaining bone and cartilage metabolism, and discusses its expression and function in various bone diseases. By combing the existing research results and controversial points, this paper aims to provide new perspectives and ideas for the prevention and treatment of bone diseases, and provide useful reference and enlightenment for future research.
2.Protective value of radiation protection safety education for patients with differentiated thyroid carcinoma treated with iodine-131
Wen WANG ; Aomei ZHAO ; Hongmei LIANG ; Jie BAI ; Qi WANG ; Yiqian LIANG ; Jianjun XUE
China Occupational Medicine 2025;52(3):313-317
Objective To evaluate the protective effect of radiation protection safety education (RPSE) on patients with differentiated thyroid carcinoma (DTC) undergoing iodine-131 (131I) treatment. Methods The DTC patients who undergo 131I treatment were divided into the control group and the RPSE group using the convenience sampling method, with 142 patients in each group. Patients in the control group received routine health education, while the RPSE group received routine health education combined with RPSE. Dose equivalent rate (DER) on pillows, bed sheets, quilt covers, and household waste of patients were compared between the two groups upon discharge. Results The median (M) DERs of patients' pillows, bed sheets, quilt covers and household waste were 3.86, 3.63, 3.91 and 56.59 times higher in the control group compared with the environmental background level, respectively. The M DERs of patients' pillows, bed sheets, quilt covers were 2.23, 2.18, and 2.55 times higher in the RPSE group compared with the environmental background level, while the M DER of household waste was equivalent to the environmental background level. The DERs of patients' pillows, bed sheets, quilt covers, and household waste in the RPSE group were significantly lower than those in the control group (all P<0.001). The DERs of the above four items were lower in both male and female patients in RPSE group compared with same-gender patients in the control group (all P<0.001). The patients' DERs of the above indicators had no significant difference among different gender in both control group and RPSE group (all P>0.05), except for higher DER of household waste in female patients than that of male patients in the control group (P<0.05). There were no significant differences in the DERs of pillows, bed sheets, quilt covers, and household waste across subgroups, where patients received different treatment doses, of both the control group and the RPSE group (all P>0.05). Conclusion RPSE for DTC patients treated with 131I, reduces the DERs of pillows, bed sheets, quilt covers, and particularly household waste.
3.Pathologic Function of Cyclin-dependent Kinase 5 and Its Relationship With Exercise
Dan JIN ; Rui-Qi HUANG ; Ting-Ting YAO ; Xue-Jie YI ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(11):2868-2879
Cyclin-dependent kinases (CDKs) are proline-induced serine/threonine kinases that are primarily involved in the regulation of cell cycle, gene transcription, and cell differentiation. In general, CDKs are activated by binding to specific regulatory subunits of cell cycle proteins and are regulated by phosphorylation of specific T-loops by CDK activated kinases. In the CDKs family, cyclin-dependent kinase 5 (CDK5) is a specialized member whose activity is triggered only by interaction with p35 and p39, which do not have the same sequence as the cell cycle proteins, and this may be one reason why CDK5 is distinguished from other CDK members by its structural and functional differences. In addition, unlike most CDK members that require phosphorylation at specific sites to function, CDK5 does not require such phosphorylation, and it can be activated simply by binding to p35 and p39. More notably, inhibitors that are commonly used to inhibit the activity of other CDK members have almost zero effect on CDK5. In contrast, CDK5, as a unique CDK family member, plays an important role in the development of numerous diseases. In metabolic diseases, elevated CDK5 expression leads to decreased insulin secretion, increased foam cell formation and triggers decreased bone mass in the body, thus accelerating metabolic diseases, and the role of CDK5 in bone biology is gradually gaining attention, and the role of CDK5 in bone metabolic diseases may become a hotspot for research in the future; in neurodegenerative diseases, hyperphosphorylation of Tau protein is an important hallmark of Alzheimer’s disease development, and changes in CDK5 expression are associated with Tau protein phosphorylation and nerve death, indicating that CDK5 is highly related to the development of the nervous system; in tumor diseases, the role of CDK5 in the proliferation, differentiation and migration and invasion of tumor cells marks the development of tumorigenesis, but different researchers hold different views, and further studies are needed in the follow-up. Therefore, the study of its mechanism of action in diseases can help to reveal the pathogenesis and pathological process of diseases. Appropriate exercise not only helps in the prevention of diseases, but also plays a positive role in the treatment of diseases. Exercise-induced mechanical stress can improve bone microstructure and increase bone mass in osteoporosis patients. In addition, exercise can effectively inhibit neuronal apoptosis and improve mitochondrial dysfunction, more importantly, appropriate exercise can inhibit the proliferation of cancer cells to a certain extent. It can be seen that exercise occupies a pivotal position in the prevention and treatment of pathologic diseases. It has been shown that exercise can reduce the expression of CDK5 and affect the pathological process of neurological diseases. Currently, there is a dearth of research on the specific mechanisms of CDK5’s role in improving disease outcomes through exercise. In order to understand its effects more comprehensively, subsequent studies need to employ diverse exercise modalities, targeting patients with various types of diseases or corresponding animal models for in-depth exploration. This article focuses on the pathological functions of CDK5 and its relationship with exercise, with a view to providing new insights into the prevention and treatment of disease by CDK5.
4.Analysis of key genes in the development from colon adeno-ma to carcinoma through high-throughput RNA sequencing
Jie BIAN ; Tao WANG ; Chang-Chun YE ; Gen-Wang GAO ; Chun-Hong MA ; Xue-Jun SUN ; Qi SUN
Chinese Journal of Current Advances in General Surgery 2024;27(4):286-291
Objective:To analyze and compare the difference of gene expression profiles in normal colon tissues,colon adenoma and carcinoma tissues by RNA sequencing technology,and re-veal the key genes and potential mechanisms in the development from colon adenoma to carcinoma.Methods:RNA sequencing analysis was carried out on normal colon tissues,colon adenomas and carcinoma tissues of the same patient,and differential genes that were significantly expressed in colon cancer and not significantly expressed in adenoma tissues were obtained,and the GO and KEGG function enrichment analysis was performed.Results:There are 4307 differential genes that are significantly expressed in colon cancer and not significantly expressed in adenoma.The GO and KEGG function enrichment analysis of these genes found that they were mainly enriched in bi-ological processes such as biological process regulation,cell process regulation,protein binding and cancer pathway,PI3K Akt signal pathway MAPK signal pathway.Conclusion:There are many genes involved in the development process from colon adenoma to carcinoma.These genes have the potential to become therapeutic targets for colorectal cancer,providing a new direction for fol-low-up research on colorectal cancer.
5.The Role and Possible Mechanisms of Exercise in Combating Osteoporosis by Modulating The Bone Autophagy Pathway
Xin-Yu DAI ; Bin LI ; Dan JIN ; Xue-Jie YI ; Rui-Qi HUANG ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(7):1589-1603
Osteoporosis leads to an imbalance in bone remodelling, where bone resorption is greater than bone formation and osteoclast degradation increases, resulting in severe bone loss. Autophagy is a lysosomal degradation pathway that regulates the proliferation, differentiation, and apoptosis of various bone cells (including osteoblasts, osteoclasts, and osteoclasts), and is deeply involved in the bone remodelling process. In recent years, the role of autophagy in the progression of osteoporosis and related bone metabolic diseases has received more and more attention, and it has become a research hotspot in this field. Summarising the existing studies, it is found that senile osteoporosis is the result of a combination of factors. On the one hand, it is the imbalance of bone remodelling and the increase of bone resorption/bone formation ratio with ageing, which causes progressive bone loss. On the other hand, aging leads to a general decrease in the level of autophagy, a decrease in the activity of osteoblasts and osteoclasts, and an inhibition of osteogenic differentiation. The lack of oestrogen leads to the immune system being in a low activation state, and the antioxidant capacity is weakened and inflammatory response is increased, inducing autophagy-related proteins to participate in the transmission of inflammatory signals, excessive accumulation of reactive oxygen species (ROS) in the skeleton, and negatively regulating bone formation. In addition, with aging and the occurrence of related diseases, glucocorticoid treatments also mediate autophagy in bone tissue cells, contributing to the decline in bone strength. Exercise, as an effective means of combating osteoporosis, improves bone biomechanical properties and increases bone density. It has been found that exercise induces oxidative stress, energy imbalance, protein defolding and increased intracellular calcium ions in the organism, which in turn activates autophagy. In bone, exercise of different intensities activates messengers such as ROS, PI3K, and AMP. These messengers signal downstream cascades, which in turn induce autophagy to restore dynamic homeostasis in vivo. During exercise, increased production of AMP, PI3K, and ROS activate their downstream effectors, AMPK, Akt, and p38MAPK, respectively, and these molecules in turn lead to activation of the autophagy pathway. Activation of AMPK inhibits mTOR activity and phosphorylates ULK1 at different sites, inducing autophagy. AMPK and p38 up-regulate per-PGC-1α activity and activate transcription factors in the nucleus, resulting in increased autophagy and lysosomal genes. Together, they activate FoxOs, whose transcriptional activity controls cellular processes including autophagy and can act on autophagy key proteins, while FoxOs proteins are expressed in osteoblasts. Exercise also regulates the expression of mTORC1, FoxO1, and PGC-1 through the PI3K/Akt signalling pathway, which ultimately plays a role in the differentiation and proliferation of osteoblasts and regulates bone metabolism. In addition, BMPs signaling pathway and long chain non-coding RNAs also play a role in the proliferation and differentiation of osteoblasts and autophagy process under exercise stimulation. Therefore, exercise may become a new molecular regulatory mechanism to improve osteoporosis through the bone autophagy pathway, but the specific mechanism needs to be further investigated. How exercise affects bone autophagy and thus prevents and treats bone-related diseases will become a future research hotspot in the fields of biology, sports medicine and sports science, and it is believed that future studies will further reveal its mechanism and provide new theoretical basis and ideas.
6.Exploration of potential biomarkers and therapeutic targets for trauma-related acute kidney injury
Peng QI ; Meng-Jie HUANG ; Wei WU ; Xue-Wen REN ; Yong-Zhi ZHAI ; Chen QIU ; Hai-Yan ZHU
Chinese Journal of Traumatology 2024;27(2):97-106
Purpose::Acute kidney injury (AKI) is one of the most common functional injuries observed in trauma patients. However, certain trauma medications may exacerbate renal injury. Therefore, the early detection of trauma-related AKI holds paramount importance in improving trauma prognosis.Methods::Qualified datasets were selected from public databases, and common differentially expressed genes related to trauma-induced AKI and hub genes were identified through enrichment analysis and the establishment of protein-protein interaction (PPI) networks. Additionally, the specificity of these hub genes was investigated using the sepsis dataset and conducted a comprehensive literature review to assess their plausibility. The raw data from both datasets were downloaded using R software (version 4.2.1) and processed with the "affy" package19 for correction and normalization.Results::Our analysis revealed 585 upregulated and 629 downregulated differentially expressed genes in the AKI dataset, along with 586 upregulated and 948 downregulated differentially expressed genes in the trauma dataset. Concurrently, the establishment of the PPI network and subsequent topological analysis highlighted key hub genes, including CD44, CD163, TIMP metallopeptidase inhibitor 1, cytochrome b-245 beta chain, versican, membrane spanning 4-domains A4A, mitogen-activated protein kinase 14, and early growth response 1. Notably, their receiver operating characteristic curves displayed areas exceeding 75%, indicating good diagnostic performance. Moreover, our findings postulated a unique molecular mechanism underlying trauma-related AKI. Conclusion::This study presents an alternative strategy for the early diagnosis and treatment of trauma-related AKI, based on the identification of potential biomarkers and therapeutic targets. Additionally, this study provides theoretical references for elucidating the mechanisms of trauma-related AKI.
7.Leukocyte cell-derived chemotaxin 2(LECT2)regulates liver ischemia-reperfusion injury
Dong MENG-QI ; Xie YUAN ; Tang ZHI-LIANG ; Zhao XUE-WEN ; Lin FU-ZHEN ; Zhang GUANG-YU ; Huang ZHI-HAO ; Liu ZHI-MIN ; Lin YUAN ; Liu FENG-YONG ; Zhou WEI-JIE
Liver Research 2024;8(3):165-171
Background and aim:Hepatic ischemia-reperfusion injury(IRI)is a significant challenge in liver trans-plantation,trauma,hypovolemic shock,and hepatectomy,with limited effective interventions available.This study aimed to investigate the role of leukocyte cell-derived chemotaxin 2(LECT2)in hepatic IRI and assess the therapeutic potential of Lect2-short hairpin RNA(shRNA)delivered through adeno-associated virus(AAV)vectors. Materials and methods:This study analyzed human liver and serum samples from five patients under-going the Pringle maneuver.Lect2-knockout and C57BL/6J mice were used.Hepatic IRI was induced by clamping the hepatic pedicle.Treatments included recombinant human LECT2(rLECT2)and AAV-Lect2-shRNA.LECT2 expression levels and serum biomarkers including alanine aminotransferase(ALT),aspartate aminotransferase(AST),creatinine,and blood urea nitrogen(BUN)were measured.Histological analysis of liver necrosis and quantitative reverse-transcription polymerase chain reaction were performed. Results:Serum and liver LECT2 levels were elevated during hepatic IRI.Serum LECT2 protein and mRNA levels increased post reperfusion.Lect2-knockout mice had reduced weight loss;hepatic necrosis;and serum ALT,AST,creatinine,and BUN levels.rLECT2 treatment exacerbated weight loss,hepatic necrosis,and serum biomarkers(ALT,AST,creatinine,and BUN).AAV-Lect2-shRNA treatment significantly reduced weight loss,hepatic necrosis,and serum biomarkers(ALT,AST,creatinine,and BUN),indicating thera-peutic potential. Conclusions:Elevated LECT2 levels during hepatic IRI increased liver damage.Genetic knockout or shRNA-mediated knockdown of Lect2 reduced liver damage,indicating its therapeutic potential.AAV-mediated Lect2-shRNA delivery mitigated hepatic IRI,offering a potential new treatment strategy to enhance clinical outcomes for patients undergoing liver-related surgeries or trauma.
8.Effects of Shugan Bushen Decoction Combined with Laparoscopic Surgery on Ovarian Volume,Serum HOXA10 Expression and Pregnancy Rate in Patients with Refractory Polycystic Ovary Syndrome
Yu-Jie ZHANG ; Zhi-Rong QI ; Rui-Xue HU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1195-1201
Objective To investigate the effects of Shugan Bushen Decoction combined with laparoscopic surgery on ovarian volume,serum homeobox gene A10(HOXA10)expression and pregnancy rate in patients with refractory polycystic ovary syndrome(PCOS).Methods A total of 80 patients with refractory PCOS of liver stagnation and kidney deficiency type were randomly divided into an observation group and a control group,with 40 cases in each group.The control group was given conventional laparoscopic surgery and conventional medicine treatment.The observation group was treated with Shugan Bushen Decoction on the basis of treatment for the control group.One menstrual cycle constituted one course of treatment,and 3 continuous courses of treatment were given.The changes of traditional Chinese medicine(TCM)syndrome scores,ovarian volume,follicular diameter,serum HOXA10 expression and levels of sex hormones of luteinizing hormone(LH),estradiol(E2),progesterone(P),follicle stimulating hormone(FSH)and testosterone in the two groups before and after treatment were observed.Moreover,the pregnancy outcomes of the two groups during the follow-up for half a year were monitored.Results(1)After treatment,the ovarian volume in the two groups was decreased to different degrees(P<0.05),and the follicular diameter was increased to different degrees(P<0.05).The intergroup comparison showed that the decrease of ovarian volume and the increase of follicular diameter in the observation group were significantly superior to those in the control group(P<0.01).(2)After treatment,the levels of LH,FSH and testosterone in the two groups were significantly lower than those before treatment(P<0.05),and the levels of HOXA10,E2 and P were significantly higher than those before treatment(P<0.05).The decrease of LH,FSH and testosterone levels and the increase of HOXA10,E2 and P levels in the observation group were significantly superior to those in the control group(P<0.05 or P<0.01).(3)After treatment,the overall TCM syndrome scores and the scores of the syndrome manifestations of abnormal menstrual volume,abnormal menstrual cycle,soreness and weakness of waist and knees,darkish red tongue,deep and unsmooth pulse in the two groups were significantly lower than those before treatment(P<0.05),and the decrease of overall TCM syndrome scores and the scores of each of the syndrome manifestations in the observation group was significantly superior to that in the control group,the differences being statistically significant(P<0.01).(4)The pregnancy rate of the observation group was 55.00%(22/40),which was significantly higher than that of 32.50%(13/40)in the control group,and the difference was statistically significant(P<0.05).Conclusion For the treatment of refractory PCOS of liver depression and kidney deficiency type,Shugan Bushen Decoction combined with laparoscopic surgery can effectively improve the ovarian function of the patients,promote the recovery of sex hormone levels,increase the expression level of HOXA10,improve the endometrial receptivity,and enhance the pregnancy rate of the patients.
9.LIN Chang-Song's Experience in Differentiating and Treating Behcet's Disease
Lian-Jie LIU ; Xue-Xia ZHENG ; Qi WU ; Chang-Song LIN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1329-1334
Behcet's disease can be classified into the category of fox-creeper disease in the field of traditional Chinese medicine(TCM).Professor LIN Chang-Song believes that the pathogenesis of Behcet's disease is characterized by deficiency in origin and excess in superficiality,and liver depression and spleen deficiency is the fundamental pathogenesis of Behcet's disease.The cause of Behcet's disease is due to exogenous attack of pathogenic qi,and the disease has the syndrome manifestation of internal accumulation of damp-heat.For the treatment of Bechet's disease,the use of self-made Baisai Prescription and Kouyan Prescription which were derived from Gancao Xiexin Decoction recorded in Jin Gui Yao Lve(Essentials from the Golden Cabinet)together with large dosage of Glycyrrhizae Radix et Rhizoma has achieved good clinical efficacy.According to the original records of traditional Chinese Medicine classics and by combining the clinical medication experience,Professor LIN Chang-Song proposed that the dosage of Glycyrrhizae Radix et Rhizoma should be enlarged,usually in the dose of 30-40 g.For the treatment of patients with Behcet's disease with obvious spleen and stomach deficiency syndrome,modified Baisai Prescription(composed of Glycyrrhizae Radix et Rhizoma Praeparata cum Melle,Codonopsis Radix,Pyrolae Herba,Pinelliae Rhizoma Praeparatum,Zingiberis Rhizoma Recens,Scutellariae Radix,Coptidis Rhizoma,etc.)is adopted and Glycyrrhizae Radix et Rhizoma Praeparata cum Melle should be used.For the treatment of patients with intense damp-heat type of Behcet's disease,Kouyan Prescription(composed of Glycyrrhizae Radix et Rhizoma,Scutellariae Radix,Coptidis Rhizoma,Pinelliae Rhizoma Praeparatum,Zingiberis Rhizoma Recens,Jujubae Fructus,Pseudostellariae Radix,Ganoderma Capense,Lophatheri Herba,Plantaginis Semen,etc.)is recommended and raw Glycyrrhizae Radix et Rhizoma should be adopted.Moreover,the importance of having proper eating and drinking,keeping regular living and avoiding to overwork to prevent the recurrence of Behcet's disease was stressed.
10.Correlation between the level of NT-proBNP and cardiorespiratory fitness of individuals following acute high altitude exposure
Ping-Ping LI ; Xiao-Wei YE ; Jie YANG ; Zhe-Xue QIN ; Shi-Zhu BIAN ; Ji-Hang ZHANG ; Xu-Bin GAO ; Meng-Jia SUN ; Zhen LIU ; Hai-Lin LYU ; Qian-Yu JIA ; Yuan-Qi YANG ; Bing-Jie YANG ; Lan HUANG
Medical Journal of Chinese People's Liberation Army 2024;49(9):998-1003
Objective To investigate the correlation between the level of N-terminal pro-Brain natriuretic peptide(NT-proBNP)and cardiorespiratory fitness following acute exposure to high altitude.Methods Forty-six subjects were recruited from the Second Affiliated Hospital of Army Medical University in June 2022,including 19 males and 27 females.After completing cardiopulmonary exercise test(CPET),serological detection of myocardial cell-related markers,and multiple metabolites at a plain altitude(300 meters above sea level),all subjects flew to a high-altitude location(3900 meters above sea level).Biomarker testing and CPET were repeated on the second and third days after arrival at high altitude.Changes in serum biomarker and key CPET indicators before and after rapid ascent to high altitude were compared,and the correlation between serum levels of various myocardial cell-related markers and metabolites and high altitude cardiorespiratory fitness was analyzed.Results Compared with the plain altitude,there was a significant decrease in maximal oxygen uptake after rapid ascent to high altitude[(25.41±6.20)ml/(kg.min)vs.(30.17±5.01)ml/(kg.min),P<0.001].Serum levels of NT-proBNP,Epinephrine(E),plasma renin activity(PRA),angiotensin Ⅱ(Ang Ⅱ),angiotensin-converting enzyme 2(ACE2)and leptin(LEP)significantly increased,with all differences being statistically significant(P<0.05)after acute high altitude exposure.In contrast,no statistically significant differences were observed for creatine kinase MB(CK-MB),cardiac troponin I(cTnI),myoglobin(Myo)and norepinephrine(NE)(P>0.05).Correlation analysis showed a significant negative correlation between NT-proBNP at plain altitude(r=-0.768,P<0.001)and at high altitude(r=-0.791,P<0.001)with maximal oxygen uptake at high altitude.Multivariate linear regression analysis indicated that maximal oxygen uptake at plain altitude(t=2.069,P=0.045),NT-proBNP at plain altitude(t=-2.436,P=0.020)and at high altitude(t=-3.578,P=0.001)were independent influencing factors of cardiorespiratory fitness at high altitude.Conclusion Cardiorespiratory fitness significantly decreases after rapid ascent to high altitude,and the baseline NT-proBNP level at plain altitude is closely related to cardiorespiratory fitness at high altitude,making it a potential predictor indicator for high altitude cardiorespiratory fitness.

Result Analysis
Print
Save
E-mail