1.Optimization of drug management model for investigator-initiated trial with benchmarking analysis
Yufei XI ; Tianxiao WANG ; Xue ZHANG ; Yingzhuo DING ; Li YAN ; Feng JIANG ; Xiangui HE ; Jiannan HUANG ; Qin LI
China Pharmacy 2025;36(3):280-284
OBJECTIVE To optimize the management model of drugs used in investigator-initiated trial (IIT). METHODS With benchmarking analysis, based on the practical work experience of a tertiary specialized hospital in the field of IIT drug management in Shanghai, a thorough review was conducted, involving relevant laws, regulations, and academic literature to establish benchmark criteria and the evaluation standards. Starting from the initiation of IIT projects, a detailed comparative analysis of key processes was carried out, such as the receipt, storage, distribution, use and recycling of drugs for trial. The deficiencies in the current management of IIT drugs were reviewed in detail and a series of optimization suggestions were put forward. RESULTS It was found that the authorized records of drug management were missing, the training before project implementation was insufficient, and the records of receipt and acceptance of IIT drugs were incomplete. In light of these existing problems, improvement measures were put forward, including strengthening the training of drug administrators and stipulating that only drug administrators with pharmacist qualifications be eligible to inspect and accept drugs, etc. The related systems were improved, and 17 key points of quality control for the management of IIT drugs were developed. CONCLUSIONS A preliminary IIT drug management system for medical institutions has been established, which helps to improve the institutional X2023076) framework of medical institutions in this field.
2.Bioequivalence study of ritonavir tablets in Chinese healthy subjects
Yuan-Yuan XU ; Chuan-Shu WANG ; Shao-Chun CHEN ; Jia-Xiang DING ; Xue-Feng WANG ; He-Yue WANG ; Jing XIE ; Huan ZHOU
The Chinese Journal of Clinical Pharmacology 2024;40(10):1502-1506
Objective To evaluate the bioequivalence of a single oral dose of ritonavir in fasted and fed conditions in healthy Chinese adult subjects with the test and reference formulations.Methods A single-center,open-label,randomized,single-dose,two-periods,two-sequence crossover design was used,and 64 subjects were enrolled in both the fasted and fed groups.The subjects received 100 mg of the test preparation or reference preparation orally per cycle,and the drug concentration of ritonavir in plasma was detected using the high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)method.Pharmacokinetic parameters were estimated by a non-compartment model,and SAS 9.4 software was used for statistical analysis.Results Arithmetic mean values of the main pharmacokinetic parameters of the subject formulation of ritonavir tablets and the reference formulation in the fasting group:Cmax were(791.90±400.20)and(809.60±449.14)ng·mL-1;AUC0_t were(6 072.61±2 631.98)and(6 296.30±3 388.95)ng·h·mL-1;AUC0-∞ were(6 129.59±2 655.57)and(6 347.26±3 434.12)ng·h·mL-1,respectively.Arithmetic mean values of the main pharmacokinetic parameters of the subject formulation of ritonavir tablets and the reference formulation in the fed group:Cmax were(512.37±233.60)and(521.74±223.87)ng·mL-1;AUC0_t were(4 203.43±2 221.33)and(4 200.13±1 993.50)ng·h·mL-1;AUC0_∞ were(4 259.21±2 266.88)and(4 259.63±2 044.12)ng·h·mL-1.The 90%confidence intervals for the geometric mean ratios of Cmax,AUC0_t and AUC0_∞ of the prototype drug ritonavir in plasma after oral administration of 100 mg of the test and reference formulations of ritonavir tablets under fasting and fed conditions fell within the 80.00%to 125.00%equivalence interval.Conclusion The test and reference formulations of ritonavir tablets were bioequivalent under fasting and postprandial conditions.
3.Fangchinoline induces antiviral response by suppressing STING degradation
Wang JINYONG ; Xie FANG ; Jia XIN ; Wang XUEJIAO ; Kong LINGDONG ; Li YIYING ; Liang XUE ; Zhang MEIQI ; He YUTING ; Feng WANDI ; Luo TONG ; Wang YAO ; Xu ANLONG
Journal of Pharmaceutical Analysis 2024;14(6):902-913
The stimulator of interferon genes(STING),an integral adaptor protein in the DNA-sensing pathway,plays a pivotal role in the innate immune response against infections.Additionally,it presents a valuable therapeutic target for infectious diseases and cancer.We observed that fangchinoline(Fan),a bis-benzylisoquinoline alkaloid(BBA),effectively impedes the replication of vesicular stomatitis virus(VSV),encephalomyocarditis virus(EMCV),influenza A virus(H1 N1),and herpes simplex virus-1(HSV-1)in vitro.Fan treatment significantly reduced the viral load,attenuated tissue inflammation,and improved survival in a viral sepsis mouse model.Mechanistically,Fan activates the antiviral response in a STING-dependent manner,leading to increased expression of interferon(1FN)and interferon-stimulated genes(ISGs)for potent antiviral effects in vivo and in vitro.Notably,Fan interacts with STING,preventing its degradation and thereby extending the activation of IFN-based antiviral responses.Collectively,our findings highlight the potential of Fan,which elicits antiviral immunity by suppressing STING degra-dation,as a promising candidate for antiviral therapy.
4.TSPO deficiency exacerbates acute lung injury via NLRP3 inflammasome-mediated pyroptosis
Jingyi HAN ; Xue ZHANG ; Menghua CAI ; Feng TIAN ; Yi XU ; Hui CHEN ; Wei HE ; Jianmin ZHANG ; Hui TIAN
Chinese Medical Journal 2024;137(13):1592-1602
Background::Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in many critically ill patients. Although inflammasome activation plays an important role in the induction of acute lung injury (ALI) and ARDS, the regulatory mechanism of this process is still unclear. When cells are stimulated by inflammation, the integrity and physiological function of mitochondria play a crucial part in pyroptosis. However, the underlying mechanisms and function of mitochondrial proteins in the process of pyroptosis are largely not yet known. Here, we identified the 18-kDa translocator protein (TSPO), a mitochondrial outer membrane protein, as an important mediator regulating nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in macrophages during ALI.Methods::TSPO gene knockout (KO) and lipopolysaccharide (LPS)-induced ALI/ARDS mouse models were employed to investigate the biological role of TSPO in the pathogenesis of ARDS. Murine macrophages were used to further characterize the effect of TSPO on the NLRP3 inflammasome pathway. Activation of NLRP3 inflammasome was preformed through LPS + adenosine triphosphate (ATP) co-stimulation, followed by detection of mitochondrial membrane potential, reactive oxygen species (ROS) production, and cell death to evaluate the potential biological function of TSPO. Comparisons between two groups were performed with a two-sided unpaired t-test. Results::TSPO-KO mice exhibited more severe pulmonary inflammation in response to LPS-induced ALI. TSPO deficiency resulted in enhanced activation of the NLRP3 inflammasome pathway, promoting more proinflammatory cytokine production of macrophages in LPS-injured lung tissue, including interleukin (IL)-1β, IL-18, and macrophage inflammatory protein (MIP)-2. Mitochondria in TSPO-KO macrophages tended to depolarize in response to cellular stress. The increased production of mitochondrial damage-associated molecular pattern led to enhanced mitochondrial membrane depolarization and pyroptosis in TSPO-KO cells. Conclusion::TSPO may be the key regulator of cellular pyroptosis, and it plays a vital protective role in ARDS occurrence and development.
5.Study on HPLC Aging Characteristic Chromatogram of Guangdong Citri Reticulatae Pericarpium
Ming-Quan CHEN ; Xue-Ying SHANG ; Hua LI ; Ren-An QIN ; Feng-Lei HE
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(8):2162-2168
Objective To establish a high performance liquid chromatography(HPLC)aging characteristic chromatogram of Guangdong Citri Reticulatae Pericarpium.Methods HPLC-diode array detector(DAD)was used to analyze the composition differences between different years of Guangdong Citri Reticulatae Pericarpium,and the relative peak area of each differential chromatographic peak was determined.The aging grade was classified by cluster analysis,and evaluated by the similarity evaluation system for chromatographic fingerprint of TCM(2012A edition).Results The different years of Guangdong Citri Reticulatae Pericarpium was clustered into two different aging grades of classⅠ and class Ⅱ.The similarity of class Ⅰ(low aging grade)Guangdong Citri Reticulatae Pericarpium was 0.708-0.957,and the similarity of class Ⅱ(high aging grade)Guangdong Citri Reticulatae Pericarpium was 0.734-0.976,and the similarity between the two was lower than 0.6.There were 9 different chromatographic peaks in the established characteristic chromatogram.The control characteristic spectrum T2 of typeⅡ Guangdong Citri Reticulatae Pericarpium can be regarded as its aging characteristic spectrum,among which peaks 1-4 and 9 are aging characteristic peaks.Conclusion The established aging characteristic chromatogram of Guangdong Citri Reticulatae Pericarpium is simple in operation,with good repeatability and reliability,and can be used for quality evaluation of different years of Guangdong Citri Reticulatae Pericarpium.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail