1.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
2.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
3.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
4.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
5.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
6.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
7.A novel TNKS/USP25 inhibitor blocks the Wnt pathway to overcome multi-drug resistance in TNKS-overexpressing colorectal cancer.
Hongrui ZHU ; Yamin GAO ; Liyun LIU ; Mengyu TAO ; Xiao LIN ; Yijia CHENG ; Yaoyao SHEN ; Haitao XUE ; Li GUAN ; Huimin ZHAO ; Li LIU ; Shuping WANG ; Fan YANG ; Yongjun ZHOU ; Hongze LIAO ; Fan SUN ; Houwen LIN
Acta Pharmaceutica Sinica B 2024;14(1):207-222
Modulating Tankyrases (TNKS), interactions with USP25 to promote TNKS degradation, rather than inhibiting their enzymatic activities, is emerging as an alternative/specific approach to inhibit the Wnt/β-catenin pathway. Here, we identified UAT-B, a novel neoantimycin analog isolated from Streptomyces conglobatus, as a small-molecule inhibitor of TNKS-USP25 protein-protein interaction (PPI) to overcome multi-drug resistance in colorectal cancer (CRC). The disruption of TNKS-USP25 complex formation by UAT-B led to a significant decrease in TNKS levels, triggering cell apoptosis through modulation of the Wnt/β-catenin pathway. Importantly, UAT-B successfully inhibited the CRC cells growth that harbored high TNKS levels, as demonstrated in various in vitro and in vivo studies utilizing cell line-based and patient-derived xenografts, as well as APCmin/+ spontaneous CRC models. Collectively, these findings suggest that targeting the TNKS-USP25 PPI using a small-molecule inhibitor represents a compelling therapeutic strategy for CRC treatment, and UAT-B emerges as a promising candidate for further preclinical and clinical investigations.
8.Visual transient elastography combined with liver steatosis analysis for assessing liver function injury after ablation
Xitian LIANG ; Wei YANG ; Yuxin CHEN ; Yu CHEN ; Xue HAN ; Wen CHENG
Chinese Journal of Ultrasonography 2024;33(3):209-215
Objective:To investigate the value of a novel technique called visual transient elastography (ViTE) and liver steatosis analysis (LiSA) in assessing liver function injury in hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) patients after ablation therapy.Methods:A total of 129 HBV-related HCC patients in Harbin Medical University Cancer Hospital from January 2022 to August 2023 were retrospectively analyzed.ViTE and LiSA examinations were applied to record the liver stiffness E value and LiSA value before ablation. An albumin-bilirubin (ALBI) score was constructed using laboratory indicators. Spearman correlation analysis was used to assess the correlation between E value, LiSA value and ALBI score, body mass index (BMI). According to the change of ALBI grade in perioperative period, the patients could be divided into two groups: liver function unchanged group and liver function injury group. Univariate and multivariate statistical methods were used to analyze related factors affecting changes in liver function after ablation, followed by establishing a predictive model.Results:Spearman analysis showed a strong positive correlation between E value and ALBI score ( rs=0.686, P<0.001), and LiSA value was weakly positively correlated with BMI ( rs=0.338, P<0.001). There were no significant correlations between E value and BMI, LiSA value and ALBI score (all P>0.05). Univariate analysis showed that differences of age, BMI, ablation parameters, E value, and LiSA value in the two groups were statistically significant (all P<0.05). Multivariate analysis showed that E value, LiSA value, and ablation time were independent predictors of hepatic dysfunction after ablation (all P<0.05). AUC was 0.892 indicating high accuracy in the predictive model based on above indicators. Conclusions:Under the real-time ultrasound guidance, a non-invasive liver function injury prediction model based on ViTE and LiSA technology can offer personalized predictions for ablative perioperative changes in liver function among HBV-related HCC patients.
9.Clinical effects of Bushen Huoxue Ointment Formula on patients with ankylosing spondylitis of Kidney Deficiency and Blood Stasis Pattern
Ye-Ying YANG ; Dong-Yi HE ; Luan XUE ; Ying-Ying YU ; Peng CHENG ; Yu SUN ; Li SU
Chinese Traditional Patent Medicine 2024;46(2):458-465
AIM To explore the clinical effects of Bushen Huoxue Ointment Formula on patients with ankylosing spondylitis of Kidney Deficiency and Blood Stasis Pattern.METHODS One hundred and sixty-seven patients were randomly assigned into control group(55 cases)for 2-year intervention of conventional treatment,exposure group(54 cases)for 2-year intervention of both Bushen Huoxue Decoction and conventional treatment,and high exposure group(58 cases)for 2-year intervention of Bushen Huoxue Ointment Formula,Bushen Huoxue Decoction and conventional treatment.The changes in clinical effects,BASDAI score,ASDAS-CRP,BASFI score,spinal pain score,PGA score,BASMI score,ASQoL score,SPARCC score,Kidney Deficiency and Blood Stasis Pattern score,ESR,CRP,IL-6,TNF-α,IL-17,IL-23,IL-35,NLR,PLR and safety indices were detected.RESULTS The high exposure group demonstrated more ASAS40,ASASAS5/6,BASDAI50 cases than the exposure group and the control group(P<0.05).After the treatment,the high exposure group displayed lower BASDAI score,ASDAS-CRP,BASFI score,spinal pain score,PGA score,BASMI score,SPARCC score,ASQoL score,Kidney Deficiency and Blood Stasis Pattern score,ESR,CRP,IL-6,TNF-α,IL-17,IL-23 than the other two groups(P<0.05),and higher IL-35(P<0.05).After adjusting confounding factors by logistic regression analysis,Bushen Huoxue Decoction and Bushen Huoxue Ointment Formula reduced BASDAI score,ASDAS-CRP(P<0.05),and enhanced clinical effects(P<0.05).No serious adverse reactions were found in the three groups.CONCLUSION For the patients with ankylosing spondylitis of Kidney Deficiency and Blood Stasis Pattern,Bushen Huoxue Ointment Formula can safely and effectively inhibit inflammation,reduce disease activity,alleviate bone marrow edema,improve clinical symptoms,and enhance joint functions and life quality.
10.Effect of palmatine inhibiting migration,invasion and epithelial mesenchymal transformation in human oral cancer KB cells
Xue-Yun CHENG ; Guang-Yao HU ; Hong-Li LIU ; Chen-Guang LIU ; Yuan-Li DING ; Hui-Ning YANG ; Yi-An ZHAO ; Zhi-Guang SUN
The Chinese Journal of Clinical Pharmacology 2024;40(12):1749-1753
Objective To investigate the effects of palmatine on migration,invasion and epithelial mesenchymal transformation(EMT)in human oral cancer KB cells.Methods KB cells were divided into control group and palmatine-L,-M,-H groups,cultured with 0,4,8 and 16 μmol·L-1 palmatine.After incubation for 48 h,scratch assay was used to detect migration;Traswell assay was used to detect invasion;matrix metalloproteinase 2(MMP-2),MMP-9 and fibronectin(FN)contents were detected by enzyme-linked immunosorbent assay;the expression of Vimentin,N-cadherin and E-cadherin mRNA were detected by real-time quantitative polymerase chain reaction;the expression of Vimentin,N-cadherin,E-cadherin,Wnt3 and β-catenin protein were detected by Western blot.Results Cell mobility in control group and palmatine-L,-M,-H groups were(69.27±8.62)%,(52.94±4.49)%,(45.22±5.05)%and(37.63±4.88)%;the number of transmembrane cells were 197.33±20.26,125.33±12.01,97.00±9.17 and 62.67±7.51;the content of MMP-2 were(2.93±0.21),(1.49±0.13),(1.16±0.15)and(0.95±0.09)ng·mL-1;the content of MMP-9 were(3.51±0.36),(2.37±0.23),(2.06±0.35)and(1.72±0.16)ng·mL-1;the content of FN were(41.28±4.02),(24.03±3.17),(20.67±2.63)and(13.82±2.19)ng·mL-1;the above indexes in palmatine-L,-M,-H groups were compared with the control group,and the differences were statistically significant(P<0.05,P<0.01).The mRNA and protein expressions of Vimentin,N-cadherin and E-cadherin,and the expressions of Wnt3 and β-catenin protein in palmatine-L,-M,-H groups were statistically significant compared with those in control group(P<0.05,P<0.01).Conclusion Palmatine can inhibit the migration,invasion and EMT of human oral cancer KB cells,and its mechanism is related to the regulation of Wnt/β-catenin signaling pathway.

Result Analysis
Print
Save
E-mail