1.Regulation of Signaling Pathways Related to Myocardial Infarction by Traditional Chinese Medicine: A Review
Wenjun WU ; Chidao ZHANG ; Jingjing WEI ; Xue LI ; Bin LI ; Xinlu WANG ; Mingjun ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):321-330
The pathological changes of myocardial infarction (MI) are mainly characterized by progressive myocardial ischemic necrosis, decline in cardiac diastolic function, thinning of the ventricular wall, and enlargement of the ventricles. The clinical manifestations include myocardial ischemia, heart failure, arrhythmia, shock, and even sudden cardiac death, rendering MI one of the most perilous cardiovascular diseases. Currently, the clinical treatment for MI primarily involves interventional procedures and drug therapy. However, due to their significant side effects and high complication rates associated with these treatments, they fail to ensure a satisfactory quality of life and long-term prognosis for patients. On the other hand, traditional Chinese medicine has demonstrated remarkable potential in improving patient prognosis while reducing side effects. Research has elucidated that various signaling pathways such as nuclear transcription factor-κB (NF-κB), adenosine 5̒-monophosphate-activated protein kinase (AMPK), transforming growth factor-β (TGF-β)/Smads, mitogen-activated protein kinase (MAPK), Wnt/β-catenin (β-catenin), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B(Akt) play crucial roles in regulating the occurrence and development of MI. Effectively modulating these signaling pathways through its therapeutic interventions, traditional Chinese medicine can enhance MI management by inhibiting apoptosis, providing anti-inflammatory properties, alleviating oxidative stress levels, and resisting myocardial ischemia. Due to its notable efficacy and favorable safety, it has become an area of focus in clinical practice.
2.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
7.Exploration of Kaixuan Jiedu Core Prescription's Efficacy in Alleviating Psoriasis Through Modulation of Ferroptosis Pathways: An Integrative Approach Involving Bioinformatics and Experimental Validation
Haoruo YANG ; Xue XIAO ; Jiaqi LI ; Ningxin ZHANG ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):69-78
ObjectiveTo use bioinformatics technology to screen the molecular patterns and diagnostic biomarkers of ferroptosis closely related to psoriasis, observe the therapeutic effect of Kaixuan Jiedu core prescription on psoriasis and explore its potential mechanism through animal experiments. MethodsPsoriasis microarray data from GEO were analyzed to identify differentially expressed genes (DEGs). Intersection with a ferroptosis gene set yielded psoriasis ferroptosis-related genes (FRGs), which underwent correlation, consensus clustering, enrichment, and immune infiltration analyses. Core diagnostic FRGs (Hub-FRGs) were identified using random forest (RF), support vector machine (SVM), LASSO regression, Nomogram, and ROC analyses. In vivo, imiquimod (5% cream) induced psoriasis in mice (except controls). Drug treatment groups received respective doses, while control and model groups received saline via daily gavage for 7 days. Back skin changes were recorded and PASI scored. Hematoxylin-eosin (HE) staining assessed histopathology. The levels of ferrous ion (Fe2+), malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and free fatty acid (FFA) in skin tissue were detected. The level of reactive oxygen species (ROS) in skin tissue was detected by immunofluorescence. Immunohistochemistry was used to detect the expression of ChaC glutathione-specific γ-glutamyl transferase 1 (CHAC1), arachidonic acid 12-lipoxygenase β (ALOX12B), trimotif protein 21 (TRIM21), proliferation marker (Ki67) and nuclear transcription factor-κB (NF-κB) protein. ResultsAnalysis of GSE30999 identified 2 100 DEGs and 24 FRGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed 1 000 biological functions and 75 pathways. After cluster analysis, combined with three machine learning algorithms, Nomogram and ROC curve analysis, the core Hub-FRGs (CHAC1, ALOX12 B, TRIM21) were obtained. Immunoinfiltration showed inactive memory CD4+T cells and activated dendritic cells abundance significantly correlated with Hub-FRGs. In vivo, model group vs. control showed significantly increased PASI/Baker scores (P<0.05), epidermal hyperkeratosis, inflammatory infiltration, and elevated levels of Fe2+, MDA, 4-HNE, FFA, ROS, CHAC1, ALOX12B, TRIM21, Ki67, and NF-κB (P<0.05). Drug groups vs. model group exhibited significantly reduced scores (P<0.05), alleviated skin lesions, and decreased levels of Fe2+, MDA, 4-HNE, FFA, ROS, Hub-FRGs, Ki67, and NF-κB (P<0.05). ConclusionKaixuan Jiedu core prescription can significantly improve the skin pathological injury of psoriasis mice, showing good therapeutic and repair effects, and its mechanism may be related to regulating the expression of ferroptosis genes CHAC1, ALOX12B and TRIM21, which are closely related to the pathogenesis of psoriasis.
8.Exploration of Kaixuan Jiedu Core Prescription's Efficacy in Alleviating Psoriasis Through Modulation of Ferroptosis Pathways: An Integrative Approach Involving Bioinformatics and Experimental Validation
Haoruo YANG ; Xue XIAO ; Jiaqi LI ; Ningxin ZHANG ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):69-78
ObjectiveTo use bioinformatics technology to screen the molecular patterns and diagnostic biomarkers of ferroptosis closely related to psoriasis, observe the therapeutic effect of Kaixuan Jiedu core prescription on psoriasis and explore its potential mechanism through animal experiments. MethodsPsoriasis microarray data from GEO were analyzed to identify differentially expressed genes (DEGs). Intersection with a ferroptosis gene set yielded psoriasis ferroptosis-related genes (FRGs), which underwent correlation, consensus clustering, enrichment, and immune infiltration analyses. Core diagnostic FRGs (Hub-FRGs) were identified using random forest (RF), support vector machine (SVM), LASSO regression, Nomogram, and ROC analyses. In vivo, imiquimod (5% cream) induced psoriasis in mice (except controls). Drug treatment groups received respective doses, while control and model groups received saline via daily gavage for 7 days. Back skin changes were recorded and PASI scored. Hematoxylin-eosin (HE) staining assessed histopathology. The levels of ferrous ion (Fe2+), malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and free fatty acid (FFA) in skin tissue were detected. The level of reactive oxygen species (ROS) in skin tissue was detected by immunofluorescence. Immunohistochemistry was used to detect the expression of ChaC glutathione-specific γ-glutamyl transferase 1 (CHAC1), arachidonic acid 12-lipoxygenase β (ALOX12B), trimotif protein 21 (TRIM21), proliferation marker (Ki67) and nuclear transcription factor-κB (NF-κB) protein. ResultsAnalysis of GSE30999 identified 2 100 DEGs and 24 FRGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed 1 000 biological functions and 75 pathways. After cluster analysis, combined with three machine learning algorithms, Nomogram and ROC curve analysis, the core Hub-FRGs (CHAC1, ALOX12 B, TRIM21) were obtained. Immunoinfiltration showed inactive memory CD4+T cells and activated dendritic cells abundance significantly correlated with Hub-FRGs. In vivo, model group vs. control showed significantly increased PASI/Baker scores (P<0.05), epidermal hyperkeratosis, inflammatory infiltration, and elevated levels of Fe2+, MDA, 4-HNE, FFA, ROS, CHAC1, ALOX12B, TRIM21, Ki67, and NF-κB (P<0.05). Drug groups vs. model group exhibited significantly reduced scores (P<0.05), alleviated skin lesions, and decreased levels of Fe2+, MDA, 4-HNE, FFA, ROS, Hub-FRGs, Ki67, and NF-κB (P<0.05). ConclusionKaixuan Jiedu core prescription can significantly improve the skin pathological injury of psoriasis mice, showing good therapeutic and repair effects, and its mechanism may be related to regulating the expression of ferroptosis genes CHAC1, ALOX12B and TRIM21, which are closely related to the pathogenesis of psoriasis.
9.Regulatory Effect of Huangqin Tang on Metabolic Homeostasis During Colitis-cancer Transformation in Colitis-associated Colorectal Cancer
Xingbo ZUO ; Xue FENG ; Caijuan ZHANG ; Haifan LIU ; Jianyao LIU ; Bin LIU ; Lin ZHU ; Qiyue SUN ; Dunfang WANG ; Weipeng YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):21-28
ObjectiveTo investigate the mechanism of Huangqin Tang (HQT) in regulating metabolic reprogramming during the inflammation-cancer transformation in colitis-associated colorectal cancer (CAC). MethodsCAC mouse model was established using the carcinogen azoxymethane (AOM) combined with the inflammatory agent dextran sulfate sodium (DSS). HQT treatment was adopted. Serum metabolomics analysis was performed at three stages (inflammation, proliferation, and tumor formation) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) untargeted metabolomics coupled with multivariate statistical analysis to explore the mechanism of HQT intervention in metabolism in CAC. ResultsThe results revealed that HQT significantly reversed the disturbance of key metabolites in CAC mice. A total of 52, 67, and 45 differential metabolites were identified in the model group, compared to the normal group, during inflammation, proliferation, and tumor stages, respectively. Lactate, linoleic acid, oleic acid, elaidic acid, and betaine were characteristic metabolites persistently enriched throughout colitis-cancer transformation. Pathway enrichment analysis of differential metabolites showed that linoleic acid metabolism and arachidonic acid metabolism were the most significantly disturbed in CAC pathogenesis. The proliferation stage featured expanded amino acid metabolic networks, while the tumor stage uniquely exhibited two new pathways of nicotinate and nicotinamide metabolism and phosphoinositide metabolism. HQT exerted stage-specific regulatory effects: targeting arachidonic acid metabolism in the inflammation stage, correcting the dysregulation of choline-carnitine metabolism in the proliferation stage, and rescuing nicotinamide and tryptophan metabolic collapse in the tumor stage. ConclusionHQT exerts regulatory effects on metabolic disorders at various stages of the colitis-cancer transformation process, thereby effectively slowing the progression from colitis to cancer. The study also reveals the dynamic metabolic characteristics of colorectal "inflammation-cancer transformation,"providing new insights for research on the targeted mechanisms of traditional Chinese medicine in anti-tumor therapy based on metabolic reprogramming.
10.Sishenwan Combined with Tongxie Yaofang Treats Ulcerative Colitis with Spleen-kidney Yang Deficiency and Liver Depression
Yaqing LIU ; Haifan LIU ; Bin LIU ; Xue FENG ; Caijuan ZHANG ; Dunfang WANG ; Lin ZHU ; Weipeng YANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):40-48
ObjectiveTo induce the rat model of ulcerative colitis (UC) with spleen-kidney Yang deficiency and liver depression, and explore the efficacy and mechanism of Sishenwan combined with Tongxie Yaofang (SSW&TXYF) based on the therapeutic principles of tonifying spleen, soothing liver, warming kidney, and astringing intestine. MethodSixty male SD rats were randomized into normal, model, mesalazine, and high-, medium-, and low-dose SSW&TXYF groups. The rats in other groups except the normal group were administrated with Sennae Folium decoction and hydrocortisone and received tail clamping for 14 days. On day 14, rats received enema with TNBS-ethanol solution to induce UC. The rats were administrated with corresponding drugs from day 15 of modeling, and the body weight and mental state were observed and recorded. The sucrose preference test was performed from day 25. On day 28, the rectal temperature was measured, and the rats were administrated with 3% D-xylose solution at a dose of 10 mL·kg-1 by gavage. Blood was sampled 1 h later, from which the serum was collected for measurement of the D-xylose content. The serum, hippocampus, and colorectum samples of rats were collected on day 29. The levels of gastrin (GAS), adrenocorticotropic hormone (ACTH), corticosterone (CORT), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), interleukin (IL)-4, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the serum and 5-hydroxytryptamine (5-HT) in the hippocampus were determined by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was employed to reveal the colonic lesions. The mRNA and protein levels of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in the colon tissue were determined by Real-time PCR and Western blot, respectively. ResultCompared with the normal group, the model group showed decreased body weight, anal temperature, and D-xylose content in the serum and increased GAS content (P<0.01). The modeling led to cAMP/cGMP unbalance and decreased the ACTH and CORT content in the serum (P<0.01), the preference for sucrose water, and the 5-HT content in the hippocampus (P<0.01). Moreover, it shortened the colorectal length and caused massive infiltration of inflammatory cells and severe structural damage in the colon tissue. High, medium, and low doses of SSW&TXYF improved above indicators (P<0.05, P<0.01), reduced inflammatory infiltration, and repaired the pathological damage of the tissue. Compared with the normal group, the model group showed lowered IL-4 level (P<0.01) and elevated TNF-α and IFN-γ levels (P<0.05, P<0.01) in the serum, as well as up-regulated expression of p38 MAPK, ERK, and JNK (P<0.05, P<0.01). Compared with the model group, SSW&TXYF elevated the IL-4 level (P<0.01), lowered the TNF-α and IFN-γ levels (P<0.05, P<0.01), and down-regulated the mRNA and protein levels of p38 MAPK, ERK, and JNK (P<0.05, P<0.01). ConclusionA rat model of UC with spleen-kidney Yang deficiency and liver depression was successfully established. SSW&TXYF can significantly mitigate this syndrome by reducing the inflammatory response in the colon and inhibiting the MAPK pathway.

Result Analysis
Print
Save
E-mail