1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.A case-control study on the association of Hashimoto’s thyroiditis and anti-thyroid antibodies with oral lichen planus
LIU Yuan ; CHEN Yan ; CONG Zhaoxia ; LI Yiming ; XUE Rui ; ZHAO Jin
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(9):757-764
Objective:
This study aims to explore the association between oral lichen planus (OLP) and Hashimoto’s thyroiditis (HT) and its anti-thyroid antibodies to provide clinical evidence for thyroid disease screening in patients with OLP.
Methods:
This study was approved by the institutional ethics committee. A total of 125 clinically and histopathologically confirmed patients with OLP were enrolled as the case group, and they were matched with 125 non-OLP controls based on sex and age. Demographic data (gender, age, lesion type, and disease duration) were collected from both groups. Serum levels of thyroid peroxidase antibodies (TPOAb) and thyroglobulin antibodies (TgAb) were measured to analyze their associations with sex, age, lesion type, and disease duration in patients with OLP.
Result:
The prevalence of HT in patients with OLP was 31.20%, significantly higher than that in the control group (9.60%) (χ2=18.504, P<0.001). The prevalence of HT in female patients with OLP (39.13%) was significantly higher than that in male patients (9.09%)(χ2=10.93,P<0.001). The positivity rate of thyroid peroxidase antibodies (TPOAb) in patients with OLP (17.6%) was significantly higher than in the control group (4.0%) (χ2=10.989, P<0.001). The TPOAb positivity rate was significantly higher in female patients (22.83%) than in male patients (3.03%) (χ2=5.210, P=0.014). There was no statistically significant difference in the positivity rate of TgAb between patients with OLP (7.2%) and the control group (3.2%) (P>0.05). Patients with erosive lesions had a significantly higher TPOAb positivity rate (25.0%, 17/68) compared to those with non-erosive lesions (8.77%, 5/57), and the difference was statistically significant (χ2=4.831, P=0.028). Logistic regression analysis revealed that female patients with OLP had an 8.935-fold higher risk of being TPOAb positive compared to males (OR=8.935, 95%CI: 1.134-70.388, P=0.038). Patients with erosive OLP lesions had a 3.199-fold higher risk of TPOAb positivity compared to those with non-erosive lesions (OR=3.199, 95%CI: 1.064-9.618, P=0.038).
Conclusion
The prevalence of HT is higher in patients with OLP, with higher positivity rates of anti-thyroid antibodies observed in female patients and those with erosive OLP lesions. This suggests that thyroid disease screening should be incorporated into the clinical management of patients with OLP, especially for women and patients who present with erosive lesions.
7.Tumor Microenvironment Polyamines Inhibit T Cell Antitumor Activity
Yuan-Bao AI ; Xue-Mei HUANG ; Sen LIU
Progress in Biochemistry and Biophysics 2025;52(8):1986-1997
Tumor immunotherapy has emerged as the fourth major therapeutic modality, following surgery, radiotherapy, and chemotherapy. Unlike traditional treatments that primarily target tumor cells directly, immunotherapy harnesses the body’s immune system to recognize and eliminate cancer cells. Over the past decade, various immunotherapeutic strategies have been developed, including immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) T cell therapy, cancer vaccines, and cytokine-based therapies. However, the immunosuppressive tumor microenvironment (TME) poses a significant obstacle to the effectiveness of these treatments. Polyamines—including putrescine, spermidine, and spermine—are polycationic metabolites that often accumulate abnormally in the TME and act as critical immunoregulatory molecules. T cells play a central role in antitumor immunity, yet their function is frequently influenced by immunoregulatory factors within the TME. Elevated polyamine levels in the TME have been implicated in dampening antitumor T cell responses, thereby facilitating tumor immune evasion. Polyamines in the TME originate from both tumor cells and tumor-associated immune cells. Tumor cells often overexpress the oncogene Myc, which drives the upregulation of polyamine biosynthetic enzymes, resulting in excessive intracellular polyamine production. Additionally, M2-polarized tumor-associated macrophages (M2-TAMs) contribute to polyamine accumulation by upregulating arginase-I (Arg-I), an enzyme that catalyzes the conversion of arginine into ornithine—a key precursor in the polyamine biosynthetic pathway. These combined sources lead to sustained polyamine enrichment in the TME, contributing to immune dysfunction and supporting tumor progression. Moreover, polyamines indirectly affect T cell activity by modulating macrophage polarization and directly suppress tumor cell apoptosis, further promoting an immunosuppressive environment. This review highlights the multifaceted roles of polyamines in modulating tumor-infiltrating T cell function, with a particular focus on their influence on CD4+ T cell differentiation,CD8+ T cell cytotoxicity, and immune checkpoint molecule expression. Recent studies suggest that polyamines suppress CD4+ T cell activation and differentiation by modulating the MAPK/ERK signaling pathway. Additionally, polyamines can impair T cell receptor (TCR) signaling and promote immune evasion through the upregulation of PD-L1 expression on tumor cells. These effects collectively contribute to weakened antitumor T cell responses. Polyamine blocking therapy (PBT), which primarily targets polyamine biosynthesis and transport, has emerged as a novel adjunctive immunotherapeutic strategy in cancer treatment. By reducing polyamine levels in the TME, PBT restores T cell effector functions and alleviates immunosuppression. Notably, studies have demonstrated that combining PBT with ICIs produces synergistic antitumor effects and may overcome resistance to ICI monotherapy. Although research has revealed the inhibitory effects of polyamines on T cell immune function, the underlying regulatory mechanisms remain to be fully elucidated. Moreover, due to compensatory mechanisms employed by tumor cells to maintain polyamine homeostasis, multi-targeted approaches may be necessary to achieve safe and effective therapeutic outcomes. Future PBT strategies may benefit from the integration of multi-omics technologies and the development of nanocarrier-based drug delivery systems, which could collectively enhance their specificity, efficacy, and applicability in cancer immunotherapy. This review systematically elucidates the immunomodulatory effects of polyamines on T cell function within the TME and provides theoretical support and novel insights for the advancement of tumor immunotherapeutic strategies.
8.In Vitro and in Vivo Evaluation of Scutellarin-phospholipid Complex Nanoemulsion and Analysis of Its Activity in Ameliorating LPS-induced Vascular Endothelial Injury
Tian LUO ; Zhiyong HE ; Xiangjun MAO ; Xue LIU ; Jinggang HE ; Yuan ZHI ; Xiangchun SHEN ; Qianli XU ; Ling TAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):159-168
ObjectiveTo evaluate some properties of scutellarin-phospholipid complex nanoemulsion(SCU-PC-NE), such as release, cell uptake and tissue distribution, and to investigate its effect on ameliorating lipopolysaccharide(LPS)-induced vascular endothelial injury. MethodSCU-PC-NE was prepared by weighting SCU-PC, ethyl oleate, Kolliphor HS15, 1,2-propylene glycol(50, 400, 514.3, 85.7 mg), respectively. And the appearance of SCU-PC-NE was observed by transmission electron microscope, the average paticle size and Zeta potential were measured by nanopotential particle size analyzer. The cumulative release of SCU-PC-NE in vitro was measured by dynamic dialysis, thiazolyl blue(MTT) colorimetric assay was used to investigate the effect of SCU-PC-NE on the viability of human umbilical vein endothelial cells(HUVECs), the inverted fluorescence microscope and flow cytometry were used to investigate cell uptake of HUVECs by SCU-PC-NE in vitro using coumarin 6 as a fluorescent probe, the tissue distribution of DiR/SCU-PC-NE labeled by near infrared fluorescent dyes was obeserved by small animal in vivo imaging system. The inflammation injury model was established by co-incubation with LPS(1 mg·L-1) and HUVECs, the effect of SCU-PC-NE on the levels of interleukin(IL)-1β and IL-6 were determined by enzyme-linked immunosorbent assay(ELISA), 18 Kunming male mice were randomly divided into blank group, model group, blank preparation group(equivalent to high dose group), SCU group and SCU-PC-NE low and high dose groups(5, 10 mg·kg-1), 3 mice in each group, and the drug administration groups were administered once in the tail vein at the corresponding dose every 48 h, equal volume of normal saline was given to the blank group and the model group, and the drug was administered for 4 consecutive times. Except for the blank group, the endothelial inflammatory injury was induced by intraperitoneal injection of LPS(10 mg·kg-1) at 12 h before the last administration in each group. Hematoxylin-eosin(HE) staining was used to investigate the effect of SCU-PC-NE on the histopathological changes in the thoracic aorta of mice. ResultThe appearance of SCU-PC-NE displayed pale yellow milky light, mostly spherical with rounded appearance and relatively uniform particle size distribution, with the average particle size of 35.31 nm, Zeta potential of 7.23 mV, and the encapsulation efficiency of 75.24%. The cumulative release in vitro showed that SCU-PC-NE exhibited sustained release properties compared with SCU. The cell viability of SCU-PC-NE was >90% at a concentration range of 1.05-8.4 mg·L-1. The results of cellular uptake experiments showed that the cellular uptake ability of SCU-PC-NE was significantly enhanced when compared with the SCU group(P<0.01). Compared with normal mice, the results of tissue distribution showed that the fluorescence intensity of DiR/SCU-PC-NE was significantly enhanced in the spleen, kidney, brain and thoracic aorta of mice at different time points after intraperitoneal injection of LPS(P<0.05, P<0.01), especially in thoracic aorta. ELISA results showed that the levels of IL-1β and IL-6 in the model group were significantly increased when compared with the blank group(P<0.05, P<0.01), and compare with the model group, all administration groups significantly down-regulated IL-1β level, with the strongest effect in the SCU-PC-NE high-dose group(P<0.01), and all administration groups significantly down-regulated IL-6 level, with the strongest effect in the SCU-PC-NE low-dose group(P<0.05). Compare with the blank group, the results of HE staining showed that the endothelial cells were damaged, the elastic fibers were broken and arranged loosely in the model group, although similar vascular injury could be observed in the blank preparation group, SCU group and SCU-PC-NE low-dose group, the vascular endothelial damage was significantly reduced in the high-dose group of SCU-PC-NE, which had a better effect than that in the SCU group. ConclusionSCU-PC-NE can promote the uptake of drugs by endothelial cells and effectively enriched in the site of vascular endothelial injury caused by LPS, suggesting that it has a protective effect on vascular endothelial injury and is a good carrier of SCU.
9.Clinical Observation on the Joint Needling Method Combined with Ultrasound in the Treatment of Patellofemoral Pain Syndrome of Qi Stagnation and Blood Stasis Type
Xiu-Lan LI ; Hui-Kang YUAN ; Shu-Xiong LUO ; Long-An CHEN ; Ai-Guo XUE ; Yu-Bing LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):141-146
Objective To observe the clinical efficacy of joint needling method combined with ultrasound in the treatment of qi stagnation and blood stasis type of patellofemoral pain syndrome(PFPS).Methods Eighty-six patients with qi stagnation and blood stasis type of PFPS were randomly divided into observation group and control group,with 43 cases in each group.The control group was given western medicine conventional treatment combined with functional exercise,and the observation group was given joint needling method combined with ultrasound treatment on the basis of the control group.Both groups were treated for 2 consecutive weeks.After 2 weeks of treatment,the clinical efficacy of the two groups was evaluated,and the changes in the Visual Analogue Scale(VAS)scores of knee pain and the Kujala scale scores of the two groups were observed before and after treatment.The changes in active range of motion(AROM)of the affected knee joint were compared before and after treatment between the two groups.Results(1)After treatment,the VAS scores of the two groups of patients were significantly improved(P<0.05),and the observation group was significantly superior to the control group in improving the level of VAS scores,and the difference was statistically significant(P<0.05).(2)After treatment,the Kujala scores of patients in the two groups were significantly improved(P<0.05),and the observation group was significantly superior to the control group in improving the level of Kujala scores,and the difference was statistically significant(P<0.05).(3)After treatment,the AROM of patients in the two groups were significantly improved(P<0.05),and the observation group was significantly superior to the control group in improving the level of AROM,and the difference was statistically significant(P<0.05).(4)The total effective rate was 95.35%(41/43)in the observation group and 81.40%(35/43)in the control group.The efficacy of the observation group was superior to that of the control group,and the difference was statistically significant(P<0.05).Conclusion The joint needling method combined with ultrasound can significantly relieve the pain symptoms of patients with PFPS and promote the recovery of knee joint function,and the clinical efficacy is remarkable.
10.Influence of PVE and PVE combined with TACE on secondary hepatectomy and prognosis of hepatocellular carcinoma
Junsheng NI ; Yao LI ; Xue LIU ; Guojun HOU ; Linghao ZHAO ; Yuan YANG ; Yefa YANG ; Weiping ZHOU
Chinese Journal of Digestive Surgery 2024;23(2):257-264
Objective:To investigate the influencing of portal vein embolization (PVE) and PVE combined with transcatheter arterial chemoembolization (TACE) on secondary hepatectomy and prognosis of patients with initially unresectable hepatocellular carcinoma (HCC).Methods:The retrospective cohort study was conducted. The clinicopathological data of 102 patients with initially unresectable HCC who were admitted to the Third Affiliated Hospital of Naval Medical University from October 26,2015 to December 31,2022 were collected. There were 82 males and 20 females, aged 52(range,25?73)years. Of 102 patients, 72 cases undergoing PVE combined with TACE were set as the PVE+TACE group, and 30 cases undergoing PVE were set as the PVE group. Observation indicators: (1) surgical resection rate of secondary hepatectomy and increase of future liver remnant (FLR); (2) situations of secondary hepatectomy; (3) follow-up. Measurement data with normal distribution were represented as Mean± SD, and comparison between groups was conducted using the independent sample t test. Measurement data with skewed distribution were represented as M(range), and comparison between groups was conducted using the Mann-Whitney U test. Count data were described as absolute numbers, and comparison between groups was conducted using the chi-square test or Fisher exact probability. Comparison of ordinal data was conducted using the Mann-Whitney U test. The Kaplan-Meier method was used to calculate survival rate and draw survival curve, and Log-Rank test was used for survival analysis. Results:(1) Surgical resection rate of secondary hepatectomy and increase of FLR. The surgical resection rate of secondary hepatectomy in the PVE+TACE group and the PVE group were 72.2%(52/72) and 53.3%(16/30), respectively, showing no significant difference between the two groups ( χ2=3.400, P>0.05). The surgical waiting time, increasing volume of FLR, growth rate of FLR in the 52 patients of PVE+TACE group receiving secon-dary hepatectomy were 20(range, 14?140)days, 140(range, 62?424)mL, 9.8(range, 1.5?26.5)mL/day, respectively. The above indicators in the 16 patients of PVE group receiving secondary hepatectomy were 16(range, 12?35)days, 160(range, 95?408)mL, 10.5(range, 1.2?28.0)mL/day, respectively. There was no significant difference in the above indicators between the 52 patients of PVE+TACE group and the 16 patients of PVE group ( Z=1.830, 1.498, 1.266, P>0.05). (2) Situations of secondary hepatectomy. The operation time, rate of tumor necrosis (>90%, 60%?90%,<60%), cases with complications ≥ grade Ⅲa in the 52 patients of PVE+TACE group receiving secondary hepatectomy were 200(range, 125?420)minutes, 8, 4, 40, 28, respectively. The above indicators in the 16 patients of PVE group receiving secondary hepatectomy were 170(range, 105?320)minutes, 0, 0, 16, 4, respectively. There were significant differences in the above indicators between the 52 patients of PVE+TACE group and the 16 patients of PVE group ( Z=2.132, ?2.093, χ2=4.087, P<0.05). (3) Follow-up. Sixty-eight patients who completed the surgery were followed up for 40(range, 10?84)months. The 1-, 3-, 5-year recurrence free survival rate in the 52 patients of PVE+TACE group receiving secondary hepatectomy were 73.0%, 53.3%, 35.4%, respectively. The above indicators in the 16 patients of PVE group were 62.5%, 37.5%, 18.8%, respectively. There was a significant difference in the recurrence free survival rate between the 52 patients of PVE+TACE group and the 16 patients of PVE group ( χ2=4.035, P<0.05). The 1-, 3-, 5-year overall survival rate in the 52 patients of PVE+TACE group receiving secondary hepatectomy were 82.5%, 61.2%, 36.6%, respectively. The above indica-tors in the 16 patients of PVE group receiving secondary hepatectomy were 68.8%, 41.7%,20.8%, respectively. There was a significant difference in the overall survival rate between the 52 patients of PVE+TACE group and the 16 patients of PVE group ( χ2=4.767, P<0.05). Conclusion:Compared with PVE, PVE+TACE as stage Ⅰ surgery can increase the surgical resection rate of secondary hepatec-tomy and the recurrence free survival rate of patients with initially unresectable HCC, prolong the long-term survival time, but not influence the growth rate of FLR.


Result Analysis
Print
Save
E-mail