1.Characteristics analysis of pediatric medicines with priority review and approval for marketing in China
Haoyu YANG ; Kan TIAN ; Xue YOU ; Hongwei DAN ; Qian WANG ; Xiaoyong YU
China Pharmacy 2025;36(5):519-523
OBJECTIVE To analyze the characteristics of pediatric medicines with priority review and approval for marketing in China, providing a reference for promoting enterprise R&D and production, as well as improving the supply guarantee mechanism for pediatric medicines. METHODS Based on publicly available data sources such as List of Approved Information for Pediatric Medications Subject to Priority Review and Approval, Pharnexcloud biomedical database, and National Medical Insurance Drug Directory, this study conducted a comprehensive analysis of the main characteristics of pediatric medicines with priority review and approval for marketing. RESULTS As of June 30, 2024, a total of 68 pediatric medicines had been approved through the priority review and approval process, covering 12 therapeutic areas, with oral dosage forms accounting for 64.71%. The median time from application to inclusion in priority review was 35.50 days, with an average of 41.69 days. The median time from inclusion in priority review to market approval was 1.24 years, with an average of 1.42 years. This included 12 domestic new medicines, 21 domestic generic medicines, 35 imported medicines, as well as 29 pediatric-specific medicines and 21 orphan medicines. Additionally, 31 of these medicines had been included in the medical insurance catalog, representing a proportion of 45.59%. CONCLUSIONS Currently, a trend of differentiated competition is emerging between domestic and imported pediatric medicines. The therapeutic areas for pediatric medicines are continuously expanding, and the dosage forms are becoming more tailored to children’s needs. However, there are still issues such as slow progress in new medicine development, insufficient stability in the medicine review and approval process, and a need to increase the proportion of medicines included in medical insurance.
2.Progress in the application of poloxamer in new preparation technology
Xue QI ; Yi CHENG ; Nan LIU ; Zengming WANG ; Hui ZHANG ; Aiping ZHENG ; Dongzhou KANG
China Pharmacy 2025;36(5):630-635
Poloxamer, as a non-ionic surfactant, exhibits a unique triblock [polyethylene oxide-poly (propylene oxide)-polyethylene oxide] structure, which endows it with broad application potential in various fields, including solid dispersion technology, nanotechnology, gel technology, biologics, gene engineering and 3D printing. As a carrier, it enhances the solubility and bioavailability of poorly soluble drugs. In the field of nanotechnology, it serves as a stabilizer etc., enriching preparation methods. In gel technology, its self-assembly behavior and thermosensitive properties facilitate controlled drug release. In biologics, it improves targeting efficiency and reduces side effects. In gene engineering, it enhances delivery efficiency and expression levels. In 3D printing, it provides novel strategies for precise drug release control and the production of high-quality biological products. As a versatile material, poloxamer holds promising prospects in the pharmaceutical field.
3.Effect of wogonin on nerve injury in rats with diabetic cerebral infarction
Huanhuan WANG ; Panpan LIANG ; Jinshui YANG ; Shuxian JIA ; Jiajia ZHAO ; Yuanyuan CHEN ; Qian XUE ; Aixia SONG
Chinese Journal of Tissue Engineering Research 2025;29(11):2327-2333
BACKGROUND:Wogonin is a flavonoid extracted from the root of Scutellaria baicalensis.Previous studies have shown that baicalein has protective effects against cerebral ischemia-reperfusion injury,and can also reduce blood sugar and complications in diabetic mice,but its role and mechanism in diabetic cerebral infarction remain unclear. OBJECTIVE:To explore the effect of wogonin on nerve injury in rats with diabetic cerebral infarction and its mechanism. METHODS:Sprague-Dawley rats were randomly divided into six groups:control group,model group,low-dose wogonin group,medium-dose wogonin group,high-dose wogonin group,and high-dose wogonin+Ras homolog gene family member A(RhoA)activator group.Except for the control group,the other rats were established with diabetes and cerebral ischemia models using intraperitoneal injection of streptozotocin and middle cerebral artery occlusion.Low,medium-and high-dose wogonin groups were intragastrically given 10,20,40 mg/kg wogonin,respectively;high-dose wogonin+RhoA activator group was intragastrically given 40 mg/kg wogonin and intraperitoneally injected 10 mg/kg lysophosphatidic acid;control group and model group were given the same amount of normal saline once a day for 7 consecutive days.Rats in each group were evaluated for neurological deficits and their blood glucose levels were measured after the last dose.TTC staining was applied to detect the volume of cerebral infarction.Hematoxylin-eosin staining was applied to observe pathological changes in brain tissue.ELISA kit was applied to detect tumor necrosis factor-α,interleukin-6,malondialdehyde,and superoxide dismutase levels in brain tissue.Western blot was applied to detect the protein expression of RhoA and Rho-associated protein kinase(ROCK)2 in brain tissue. RESULTS AND CONCLUSION:Compared with the control group,the neuronal structure of rats in the model group was severely damaged,with cell necrosis and degeneration,the neurological deficit score,blood glucose level,and infarct volume were significantly elevated(P<0.05),the levels of tumor necrosis factor-α,interleukin-6,and malondialdehyde,and the protein expression of RhoA and ROCK2 in brain tissue were significantly increased(P<0.05),and the superoxide dismutase level was decreased(P<0.05).Compared with the model group,the low-,medium-,and high-dose wogonin groups showed improved neuronal damage,reduced cell degeneration and necrosis,a significant reduction in neurological deficit score,blood glucose level,infarct volume,and the levels of tumor necrosis factor-α,interleukin-6,and malondialdehyde,and the protein expression of RhoA and ROCK2 in brain tissue,and an increase in the superoxide dismutase level(P<0.05).Compared with the high-dose wogonin group,the high-dose wogonin+RhoA activator group significantly weakened the improvement in the above indexes of rats with diabetic cerebral infarction(P<0.05).To conclude,wogonin can improve the blood glucose level in rats with diabetic cerebral infarction,reduce cerebral infarction and nerve injury,and its mechanism may be related to the inhibition of RhoA/ROCK signaling pathway.
4.Regulation of Signaling Pathways Related to Myocardial Infarction by Traditional Chinese Medicine: A Review
Wenjun WU ; Chidao ZHANG ; Jingjing WEI ; Xue LI ; Bin LI ; Xinlu WANG ; Mingjun ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):321-330
The pathological changes of myocardial infarction (MI) are mainly characterized by progressive myocardial ischemic necrosis, decline in cardiac diastolic function, thinning of the ventricular wall, and enlargement of the ventricles. The clinical manifestations include myocardial ischemia, heart failure, arrhythmia, shock, and even sudden cardiac death, rendering MI one of the most perilous cardiovascular diseases. Currently, the clinical treatment for MI primarily involves interventional procedures and drug therapy. However, due to their significant side effects and high complication rates associated with these treatments, they fail to ensure a satisfactory quality of life and long-term prognosis for patients. On the other hand, traditional Chinese medicine has demonstrated remarkable potential in improving patient prognosis while reducing side effects. Research has elucidated that various signaling pathways such as nuclear transcription factor-κB (NF-κB), adenosine 5̒-monophosphate-activated protein kinase (AMPK), transforming growth factor-β (TGF-β)/Smads, mitogen-activated protein kinase (MAPK), Wnt/β-catenin (β-catenin), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B(Akt) play crucial roles in regulating the occurrence and development of MI. Effectively modulating these signaling pathways through its therapeutic interventions, traditional Chinese medicine can enhance MI management by inhibiting apoptosis, providing anti-inflammatory properties, alleviating oxidative stress levels, and resisting myocardial ischemia. Due to its notable efficacy and favorable safety, it has become an area of focus in clinical practice.
5.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
6.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
7.Morphologic and functional effect of core training combined with respiratory training on multifidus and transversus abdominis in patients with lumbar disc herniation
Jianing SONG ; Xiaole LOU ; Huan LIU ; Xue HAN ; Lei XU ; Min WANG
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):107-116
ObjectiveTo explore the effect of respiratory training based on core stabilization training on lumbar disc herniation. MethodsFrom January, 2023 to October, 2024, 96 patients with lumbar disc herniation admitted to the First Affiliated Hospital of Bengbu Medical University were divided into control group (n = 32), core group (n = 32) and respiratory group (n = 32). All the groups underwent conventional rehabilitation therapy, with core stabilization training in the core group and respiratory training combined with core stabilization training in the respiratory group, additionally, for four weeks. Before and after training, the scores of Visual Analogue Scale, Japanese Orthopaedic Association (JOA) and Oswestry Dysfunction Index (ODI) were compared, the average electromyographic value (AEMG) and root mean square (RMS) value of the multifidus and transversus abdominis were detected by surface electromyography (sEMG); and the thickness of the multifidus and transversus abdominis were measured by musculoskeletal ultrasonography bilaterally. ResultsThe intra-group effect (F > 597.796, P < 0.001), inter-group effect (F > 16.535, P < 0.001) and interaction effect (F > 49.622, P < 0.001) were significant in the scores of VAS, JOA and ODI; which were better in the respiratory group than in the control group and the core group (P < 0.05), and were better in the core group than in the control group (P < 0.001). The intra-group effect (F > 7971.631, P < 0.001), inter-group effect (F > 177.760, P < 0.001) and interaction effect (F > 478.771, P < 0.001) were significant in the thickness of the transversus abdominis and multifidus; which were better in the respiratory group than in the control group and the core group (P < 0.001), and were better in the core group than in the control group (P < 0.001). The intra-group effect (F > 144303.007, P < 0.001), inter-group effect (F > 1495.458, P < 0.001) and interaction effect (F > 3121.361, P < 0.001) were significant in the RMS of the multifidus and transversus abdominis; which were better in the respiratory group than in the control group and the core group (P < 0.001), and were better in the core group than in the control group (P < 0.001). The intra-group effect (F > 1890.532, P < 0.001), inter-group effect (F > 607.132, P < 0.001) and interaction effect (F > 824.923, P < 0.001) were significant in the AEMG of the multifidus and transversus abdominis; which were better in the respiratory group than in the control group and core group (P < 0.001), and were better in the core group than in the control group (P < 0.001). ConclusionCore training combined with respiratory training can more effectively reduce pain and improve dysfunction by enhancing the strength and control of the core muscles, thus improving the quality of life of patients with lumbar disc herniation.
8.Effect of NEP1-40/PLGA on facial nerve repair in rats
XUE Bing ; XI Hualei ; YAO Lihong ; XU Wanqiu ; XU Xiaohang ; LIN Song ; PIAO Guiyan ; WANG Xiumei
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(2):110-119
Objective:
To investigate the effect of neurite outgrowth inhibitor extracellular peptide residues 1-40 (NEP1-40) combined with poly (lactic-co-glycolic acid) (PLGA) and gelatin electrospun fiber membrane on facial nerve repair in rats.
Methods:
According to the principle of random grouping, 108 male SD rats were divided into four groups (n = 27 in each group, approved by the ethics committee), namely, the sham group, control group, PLGA group, and NEP1-40 + PLGA group. A facial nerve fracture model was established for all of the groups except for the sham group. The control group received no further treatment, the PLGA group and the NEP1-40+PLGA group were supported by PLGA membrane, and the NEP1-40+PLGA group received one immediate local injection of NEP1-40 (5 μg/μL) at a dose of 10 μL. Facial nerve function analysis, electrophysiological examination, transmission electron microscope observation, HE staining, and immunohistochemical staining of myelin marker S100β and axonal marker β3-tubulin were used to evaluate the recovery of injured facial nerves of rats at 2, 4 and 8 weeks.
Results :
At 8 weeks, the facial nerve function score of the NEP1-40+PLGA group was better than that of the control group and PLGA group (P < 0.001), and facial nerve function was significantly restored. Electrophysiological examination of nerve action potentials at the injured facial nerve showed that the amplitude in the NEP1-40+PLGA group was higher than that of the control group and PLGA group (P < 0.001), but there was no significant difference in latency and conduction velocity results between the groups (P > 0.05). At 2, 4, and 8 weeks, transmission electron microscopy showed that the number of myelinated nerve fibers and myelin sheath thickness in the cross-section of the injured facial nerve in the NEP1-40+PLGA group were greater than those in the other groups (P < 0.05). At 8 weeks, HE staining showed that the facial nerves in the control group had partially recovered, but the overall cell distribution was uneven and the boundary with surrounding tissues was slightly blurred. In contrast, the NEP1-40+PLGA group had a relatively uniform cell distribution and a clearer boundary with surrounding tissues. At 2, 4, and 8 weeks, the immunohistochemical results showed that in the cross-section of the injuried facial nerve, NEP1-40 increased the expression of neural markers S100 β and β3-tubulin, especially β3-tubulin, which was close to normal levels (P > 0.05)
Conclusion
NEP1-40 is beneficial for the generation of new myelin sheaths and axons at the site of injury, and it can promote the repair and regeneration of injured facial nerves to a certain extent, thus accelerating the recovery of injured nerve function.
9.Zishen Tiaogan Prescription Treats Diminished Ovarian Reserve in Rats via Keap1/Nrf2/HO-1 Signaling Pathway
Zhongtong LI ; Yaping ZHANG ; Chen YOU ; Qingqing LI ; Yingjie WANG ; Siwen OU ; Taomei XUE ; Chuqi ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):72-80
ObjectiveTo observe the effect of Zishen Tiaogan prescription on the oxidative stress injury in the rat model of diminished ovarian reserve (DOR) and explore the role of the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty-eight female SD rats were randomly assigned into a normal group (n=12) and a modeling group (n=36). The rats in the modeling group received subcutaneous injection of galactose (350 mg·kg-1) combined with immobilization stress daily. After 28 days of modeling, 6 rats in the normal group and 6 rats in the modeling group were sacrificed to examine the modeling results. The successfully modeled rats were assigned into model, estradiol valerate (0.09 mg·kg-1), and low-, medium-, and high-dose (6.39, 12.78, 25.56 g·kg-1, respectively) Zishen Tiaogan prescription groups. The intervention lasted for 4 weeks with 6 animals per group. Hematoxylin-eosin staining was used to observe the estrous cycle and the pathological changes in the ovarian tissue. The ovarian index was calculated. Enzyme-linked immunosorbent assay was employed to measure the serum levels of sex hormones and oxidative stress-related indexes. Western blot and real-time PCR were employed to determine the protein and mRNA levels, respectively, of Nrf2, Keap1 and HO-1 in the ovarian tissue. The positive expression of superoxide dismutase 2 (SOD2) in the ovarian tissue was detected by immunohistochemistry (IHC). ResultsCompared with the normal group, the model group showed reduced follicles in the ovary, loose arrangement of the follicle granule layer, declined levels of anti-Mullerian hormone (AMH) and estradiol (E2) in the serum, elevated levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) (P<0.01), lowered levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) (P<0.01), and increased accumulation of malondialdehyde (MDA) (P<0.01). In addition, the modeling led to up-regulated protein and mRNA levels of Keap1 (P<0.01), the expression of Nrf2 and HO-1 protein was significantly decreased (P<0.01), the mRNA expression of Nrf2 was significantly decreased (P<0.05), the mRNA expression of HO-1 was significantly decreased (P<0.01), in the ovarian tissue. Compared with model group, the estradiol valerate and low-, medium-, and high-dose Zishen Tiaogan prescription groups showed increases in the ovarian index (P<0.01) and serum E2 and AMH levels (P<0.01), declined levels of FSH and LH (P<0.01), increased follicles in the ovary, elevated levels of SOD, CAT, and GSH, and reduced accumulation of MDA (P<0.05, P<0.01). Furthermore, these groups showcased down-regulated protein and mRNA levels of Keap1 (P<0.01), the expression of Nrf2 protein was significantly increased (P<0.01), the expression level of HO-1 protein was increased (P<0.05,P<0.01), and increased positive expression of SOD2 (P<0.01). ConclusionZishen Tiaogan prescription can regulate the serum levels of hormones, down-regulate the expression of Keap1, up-regulate the expression of Nrf2, HO-1, and SOD2, enhance the antioxidant capacity, and reduce the peroxidation damage in the ovarian tissue to improve the ovarian reserve function in the rat model of DOR. High-dose Zishen Tiaogan prescription demonstrated the best effect and the mechanism is associated with the regulation of the Keap1/Nrf2/HO-1 pathway.
10.Regulation of Tumor Immune Homeostasis by Programmed Cell Death and Intervention Effect of Traditional Chinese Medicine Under Theory of Regulating Qi and Resolving Toxins
Bingwei YANG ; Xue CHEN ; Chenglei WANG ; Haoyu ZHAI ; Weidong LI ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):212-220
Tumor immune homeostasis is a dynamic equilibrium state in which the body removes abnormal mutated cells in time to prevent tumor development without damaging other normal cells under the surveillance of the immune system. It is an important concept to understand the process of tumor development. Programmed cell death (PCD) is a kind of regulable cell death including various forms such as apoptosis, autophagy, pyroptosis, necrosis, and ferroptosis. It is regarded as an important way for the body to remove abnormal or mutated cells. In recent years, modern research has found that PCD has a bi-directional regulatory effect on carcinogenesis and tumor development. In the early stage of tumor formation, PCD can control tumor development in time by playing a specific immune clearance role, while in the later tumorigenic stage, PCD can promote the growth and development of tumor cells by forming a tumor-specific microenvironment, resulting in carcinogenic effects. Therefore, PCD is regarded as an important way to maintain tumor immune homeostasis. Based on the idea of ''supporting the vital Qi and cultivating the root'' by professors Yu Guiqing and Piao Bingkui, the team proposed the theory of ''regulating Qi and resolving toxins'' and applied it to clinical tumor prevention and treatment. Based on the theory of ''regulating Qi and resolving toxins'', the research summarized the current progress of modern medical research on mechanisms related to PCD to explore the role of PCD in the regulation of tumor immune homeostasis. The article believed that the harmonious state of Qi movement was the basic condition for normal PCD to maintain tumor immune homeostasis, while the disorder of Qi movement and the evolution of tumor toxicity were the core processes of abnormal PCD and disorder of tumor immunity homeostasis, which led to the escape and development of tumor cells. Therefore, under the guidance of ''regulating Qi and removing toxins'', the idea of full-cycle prevention and treatment of tumors was proposed summarily. In the early stage of tumor formation, the method of ''regulating Qi movement and strengthening vital Qi'' was applied to reestablish tumor immune homeostasis and to promote the elimination of abnormal cells. In the late tumorigenic stage, the method of ''resolving toxins and dispelling evils'' was applied to reverse the specific microenvironment of tumors and inhibit the development of tumor cells, with a view to providing new theoretical support for the prevention and treatment of tumors through traditional Chinese medicine.


Result Analysis
Print
Save
E-mail