1.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
2.The mechanism of Laggerae Herba in improving chronic heart failure by inhibiting ferroptosis through the Nrf2/SLC7A11/GPX4 signaling pathway
Jinling XIAO ; Kai HUANG ; Xiaoqi WEI ; Xinyi FAN ; Wangjing CHAI ; Jing HAN ; Kuo GAO ; Xue YU ; Fanghe LI ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):343-353
Objective:
To investigate the role and mechanism of the heat-clearing and detoxifying drug Laggerae Herba in regulating the nuclear factor-erythroid 2-related factor-2(Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway to inhibit ferroptosis and improve chronic heart failure induced by transverse aortic arch constriction in mice.
Methods:
Twenty-four male ICR mice were divided into the sham (n=6) and transverse aortic arch constriction groups (n=18) according to the random number table method. The transverse aortic arch constriction group underwent transverse aortic constriction surgery to establish models. After modeling, the transverse aortic arch constriction group was further divided into the model, captopril, and Laggerae Herba groups according to the random number table method, with six mice per group. The captopril (15 mg/kg) and Laggerae Herba groups (1.95 g/kg) received the corresponding drugs by gavage, whereas the sham operation and model groups were administered the same volume of ultrapure water by gavage once a day for four consecutive weeks. After treatment, the cardiac function indexes of mice in each group were detected using ultrasound. The heart mass and tibia length were measured to calculate the ratio of heart weight to tibia length. Hematoxylin and eosin staining were used to observe the pathological changes in myocardial tissue. Masson staining was used to observe the degree of myocardial fibrosis. Wheat germ agglutinin staining was used to observe the degree of myocardial cell hypertrophy. Prussian blue staining was used to observe the iron deposition in myocardial tissue. An enzyme-linked immunosorbent assay was used to detect the amino-terminal pro-brain natriuretic peptide (NT-proBNP) and glutathione (GSH) contents in mice serum. Colorimetry was used to detect the malondialdehyde (MDA) content in mice serum. Western blotting was used to detect the Nrf2, GPX4, SLC7A11, and ferritin heavy chain 1 (FTH1) protein expressions in mice cardiac tissue.
Results:
Compared with the sham group, in the model group, the ejection fraction (EF) and fractional shortening (FS) of mice decreased, the left ventricular end-systolic volume (LVESV) and left ventricular end-systolic diameter (LVESD) increased, the left ventricular anterior wall end-systolic thickness (LVAWs) and left ventricular posterior wall end-systolic thickness (LVPWs) decreased, the ratio of heart weight to tibia length increased, the myocardial tissue morphology changed, myocardial fibrosis increased, the cross-sectional area of myocardial cells increased, iron deposition appeared in myocardial tissue, the serum NT-proBNP and MDA levels increased, the GSH level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue decreased (P<0.05). Compared with the model group, in the captopril and Laggerae Herba groups, the EF, FS, and LVAWs increased, the LVESV and LVESD decreased, the ratio of heart weight to tibia length decreased, the myocardial cells were arranged neatly, the degree of myocardial fibrosis decreased, the cross-sectional area of myocardial cells decreased, the serum NT-proBNP level decreased, and the GSH level increased. Compared with the model group, the LVPWs increased, the iron deposition in myocardial tissue decreased, the serum MDA level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue increased (P<0.05) in the Laggerae Herba group.
Conclusion
Laggerae Herba improves the cardiac function of mice with chronic heart failure caused by transverse aortic arch constriction, reduces the pathological remodeling of the heart, and reduces fibrosis. Its mechanism may be related to Nrf2/SLC7A11/GPX4 pathway-mediated ferroptosis.
3.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
4.Epidemiological characteristics and trends of non-suicidal self-injury among middle school students in Jiading District of Shanghai from 2015 to 2023
Chinese Journal of School Health 2025;46(9):1282-1286
Objective:
To analyze the epidemiological characteristics and changing trends of non suicidal self injury (NSSI) behaviors among middle school students in Jiading District of Shanghai, from 2015 to 2023, so as to provide a basis for the development of NSSI prevention and control measures among students.
Methods:
Using a stratified cluster random sampling method, a total of five times for Shanghai Adolescent Health Risk Behavior Surveys were conducted for every two years in Jiading District of Shanghai from 2015 to 2023. A total of 5 231 middle school students from junior high schools and senior high schools were selected for questionnaire surveys. Intergroup comparisons were performed using the x 2 test or the χ 2 trend test, and the JointPoint 5.0 software was used to analyze the changing trends, with the annual percent change (APC) used for evaluation. A binary Logistic regression model was employed to analyze the related factors of NSSI behavior among middle school students.
Results:
In 2023, the reported NSSI rate among middle school students in Jiading District was 14.2%. The rate was significantly higher among junior high school students (17.1%) than that among senior high school students (11.1%), and higher among females (19.2%) than that among males (10.0%) ( χ 2=10.04, 23.21, both P <0.01). From 2015 to 2023, the overall reported NSSI rate showed an increasing trend, rising from 8.6% in 2015 to 14.2% in 2023 ( χ 2 trend =22.25), with an APC of 6.64% ( t =3.49), and the APC for girls was 9.79 % ( t =3.20) (all P <0.05). Among students reporting NSSI, the proportion experiencing ≥6 episodes increased from 10.8% in 2015 to 19.2% in 2023 ( χ 2 trend =6.57, P <0.05). Multivariate Logistic regression analysis indicated that girls, junior high school students, those with insomnia, depressive emotion and drinkers had higher risks of NSSI, compared to boys, senior high school students, those without insomnia, non depressive emotion students and non drinkers ( OR =1.71, 1.96, 3.44, 4.76, 1.77, all P < 0.05 ).
Conclusions
The reported rate of NSSI among middle school students in Jiading District of Shanghai, increased annually from 2015 to 2023, and the proportion of repeated NSSI also showed an upward trend. Early intervention measures targeting middle school students, especially junior high school students and females, should be implemented to prevent and control its occurrence and development.
5. Mechanism of ellagic acid improving cognitive dysfunction in APP/PS double transgenic mice based on PI3K/AKT/GSK-3β signaling pathway
Li-Li ZHONG ; Xin LU ; Ying YU ; Qin-Yan ZHAO ; Jing ZHANG ; Tong-Hui LIU ; Xue-Yan NI ; Li-Li ZHONG ; Yan-Ling CHE ; Dan WU ; Hong LIU
Chinese Pharmacological Bulletin 2024;40(1):90-98
Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg
6. Effects of Tao Hong Si Wu decoction on IncRNA expression in rats with occlusion of middle cerebral artery
Li-Juan ZHANG ; Chang-Yi FEI ; Chao YU ; Su-Jun XUE ; Yu-Meng LI ; Jing-Jing LI ; Ling-Yu PAN ; Xian-Chun DUAN ; Li-Juan ZHANG ; Chang-Yi FEI ; Chao YU ; Su-Jun XUE ; Yu-Meng LI ; Jing-Jing LI ; Xian-Chun DUAN ; Dai-Yin PENG ; Xian-Chun DUAN ; Dai-Yin PENG
Chinese Pharmacological Bulletin 2024;40(3):582-591
Aim To screen and study the expression of long non-coding RNA (IncRNA) in rats with middle cerebral artery occlusion (MCAO) with MCAO treated with Tao Hong Si Wu decoction (THSWD) and determine the possible molecular mechanism of THSWD in treating MCAO rats. Methods Three cerebral hemisphere tissue were obtained from the control group, MCAO group and MCAO + THSWD group. RNA sequencing technology was used to identify IncRNA gene expression in the three groups. THSWD-regulated IncRNA genes were identified, and then a THSWD-regu-lated IncRNA-mRNA network was constructed. MCODE plug-in units were used to identify the modules of IncRNA-mRNA networks. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the enriched biological functions and signaling pathways. Cis- and trans-regulatory genes for THSWD-regulated IncRNAs were identified. Reverse transcription real-time quantitative pol-ymerase chain reaction (RT-qPCR) was used to verify IncRNAs. Molecular docking was used to identify IncRNA-mRNA network targets and pathway-associated proteins. Results In MCAO rats, THSWD regulated a total of 302 IncRNAs. Bioinformatics analysis suggested that some core IncRNAs might play an important role in the treatment of MCAO rats with THSWD, and we further found that THSWD might also treat MCAO rats through multiple pathways such as IncRNA-mRNA network and network-enriched complement and coagulation cascades. The results of molecular docking showed that the active compounds gallic acid and a-mygdalin of THSWD had a certain binding ability to protein targets. Conclusions THSWD can protect the brain injury of MCAO rats through IncRNA, which may provide new insights for the treatment of ischemic stroke with THSWD.
7.First aid and nursing care of a patient with upper gastrointestinal bleeding induced by Dieulafoy disease after liver transplantation
Ying LIU ; Yajuan CUI ; Jing LI ; Xuexue LEI ; Xue GUAN ; Ying YU
Chinese Journal of Practical Nursing 2024;40(3):218-221
Objective:To summarize the first aid and nursing experience of a patient with upper gastrointestinal bleeding induced by Dieulafoy disease after liver transplantation.Methods:One case with upper gastrointestinal bleeding induced by Dieulafoy disease after liver transplantation was given a series of treatment and nursing measures, including identify bleeding manifestations, providing emergency nursing measures, nutritional support treatment, establishing infection prevention and control system, implementing prone ventilation and pulmonary function rehabilitation, precise immunosuppressive therapy, various forms of psychological care in the First Hospital of Jilin University in November 22, 2021.Results:After 58 d of careful treatment and nursing, the patient recovered and was discharged.Conclusions:Dieulafoy disease is a critical disease, and early diagnosis and targeted first aid and predictive care for liver transplant patients with such diseases are the key to promoting recovery.
8.Personal mastery among paediatric nurses:current status and influencing factors
Yajuan CUI ; Ying LIU ; Ying YU ; Jing LI ; Xue GUAN
Modern Clinical Nursing 2024;23(2):28-33
Objective To investigate the current status about personal mastery in paediatric nurses in a tertiary hospital in Changchun and to analyse the influencing factors.Methods A total of 340 paediatric nurses in the hospital were enrolled in the investigation with the methods of general data questionnaire,personal mastery scale(PMS),nurses'perceived professional benefits scale(NPPBS)and practice environment scale(PES).Results 321 paediatric nurses complete the research.The total score of personal mastery among the paediatric nurses was found at(27.63±1.99)and was at a middle-high level.Multiple linear regression analysis showed the overall independent factors that affected the overall personal mastery of the paediatric nurses included type of job contract,average monthly income,working experience,number of night shifts per month,the perceived professional benefits and practice environment of the nurses(P<0.05).Conclusion Personal mastery among the paediatric nurses is at a middle-high level.Nursing managers should take targeted and pertinent measures to the identified influencing factors in order to improve the personal mastery,relieve work related pressures,reduce job burnout,enhance professional identity and thereby promote the stability and development the workforce in paediatric nursing.
9.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
10.Effect of high-fat diet intake on pharmacokinetics of amoxicillin and clavulanate potassium tablet in healthy Chinese volunteers
Yu-Fang XU ; Hao-Jing SONG ; Bo QIU ; Yi-Ting HU ; Wan-Jun BAI ; Xue SUN ; Bin CAO ; Zhan-Jun DONG
The Chinese Journal of Clinical Pharmacology 2024;40(4):589-593
Objective To observe the pharmacokinetic effect of amoxicillin and clavulanate potassium tablets on amoxicillin in Chinese healthy subjects under fasting and high fat and high calorie diet.Methods 71 healthy subjects were given a single dose of amoxicillin potassium clavulanate tablets(0.375 g)on fasting or high fat diet,and venous blood samples were collected at different time points.The concentrations of amoxicillin in human plasma were determined by HPLC-MS/MS method,and the pharmacokinetic parameters were calculated by non-atrioventricular model using PhoenixWinNonlin 8.0 software.Results The main pharmacokinetic parameters of amoxicillin potassium clavulanate tablets after fasting and high fat diet were(5 105.00±1 444.00),(4 593.00±1 327.00)ng·mL-1,and postprandial-fasting ratio 89.40%,90%confidence interval(79.55%-100.19%);t1/2 were(1.52±0.16),(1.39±0.22)h;AUC0-t were(12 969.00±1 841.00),(11 577.00±1 663.00)ng·mL-1·h,and postdietary/fasting ratio 89.20%,90%confidence interval(83.92%-94.28%);AUC0-∞ were(13 024.00±1 846.00),(11 532.00±1 545.00)ng·mL-1·h,and postprandial-fasting ratio 88.60%,90%confidence interval(83.48%-93.50%).The median Tmax(range)were 1.63(0.75,3.00)and 2.50(0.75,6.00)h,respectively,and the Tmax of postprandial medication was delayed(P<0.01).Conclusion Compared with fasting condition,amoxicillin Tmax was significantly delayed after high fat diet,while Cmax,AUC0-t and AUC0-∞ were not significantly changed,indicating that food could delay the absorption of amoxicillin,but did not affect the degree of absorption.


Result Analysis
Print
Save
E-mail